A counterexample to a theorem of Bremermann on Shilov boundaries - revisited

Marek Jarnicki,

Peter Pflug

Abstrakt

We continue to discuss the example presented in [4]. In particular, we clarify some gaps and complete the description of the Shilov boundary.

Słowa kluczowe: Shilov boundary, Bergman boundary
References

1. Bishop E. A., A minimal boundary for function algebras, Pac. J. Math., 9 (1959), 629{642.
2. Fuks B. A., Special chapters in the theory of analytic functions of several complex variables, Translations of Mathematical Monographs, 14, AMS, Providence, R. I., 1965.
3. Jarnicki M., Pug P., Extension of Holomorphic Functions, de Gruyter Expositions in Mathematics 34, Walter de Gruyter, 2000.
4. Jarnicki M., Pug P., A counterexample to a theorem of Bremermann on Shilov boundaries, Proc. Amer. Math. Soc., 143 (2015), 1675{1677.

Czasopismo ukazuje się w sposób ciągły on-line.
Pierwotną formą czasopisma jest wersja elektroniczna.