Universal overconvergence and Ostrowski gaps for holomorphic functions of several variables

Marek Jarnicki,

Józef Siciak

Abstrakt

We study the universal overconvergence and its relations with Ostrowski gaps for holomorphic functions of several complex variables.

Słowa kluczowe: Ostrowski gaps, polynomial convexity, universal overconvergence
References

1. Armitage D. H., Universal Overconvergence of polynomial expansions of harmonic functions, J. Approx. Theory, 118 (2002), 225-234.
2. Klimek M., Pluripotential Theory, Oxford University Press, 1991.
3. Luh W., Universal approximation properties of overconvergent power series on open sets,Analysis, 6 (1986), 191-207.
4. Manolaki M., Ostrowski-type theorems for harmonic functions, J. Math. Anal. Appl., 391 (2012), 480-488.
5. Manolaki M., Universal polynomial expansions of harmonic functions, Potential Anal., 38 (2013), 985-1000.
6. Muller J.,Yavrian A., On polynomial sequences with restricted growth near in nity, Bull. Lond. Math. Soc., 34 (2002), 189-199.
7. Siciak J., Extremal plurisubharmonic functions and capacities in CN, Sophia Kokyuroku in Mathematics, 14. Tokyo: Sophia University, Department of Mathematics (1982), 1-97.
8. Siciak J., Sets in CN with vanishing global extremal function and polynomial approximation, Ann. Fac. Sci. Toulouse Math., 20 (2011), Fascicule Special, 189-209.
9. Siciak J., Some gap power series in multidimesional setting, Ann. Univ. Mariae Curie-Skłodowska, 65 (2011), 179-190.
10. Stout E. L., Polynomial Convexity, Birkhauser, Boston, Basel, Berlin, 2007.

Czasopismo ukazuje się w sposób ciągły on-line.
Pierwotną formą czasopisma jest wersja elektroniczna.