On the complex Monge-Ampère operator in unbounded domains

Per Åhag,

Rafał Czyż

Abstrakt
Abstract. In this note we give sufficient conditions on a measure , defined
on a unbounded strictly hyperconvex domain in Cn, to be the Monge
Amp±re measure of some plurisubharmonic function. These generalize recent
results by Le et al.
References

Ahag P., Cegrell U., Czyz R., Ph¤m H. H., Monge_Amp±re measures on pluripolar sets,

J. Math. Pures Appl., 92 (2009), 613_627.

2. _Ahag P., Czyz R., Kolodziej's subsolution theorem for unbounded pseudoconvex domains,

Univ. Iagel. Acta Math., 50 (2012), 7_23.

3. Blocki Z., Estimates for the complex Monge_Amp±re operator, Bull. Pol. Acad. Sci. Math.,

41 (1993), 151_157.

4. Cegrell U., The general definition of the complex Monge_Amp±re operator, Ann. Inst.

Fourier (Grenoble), 54 (2004), 159_179.

5. Cegrell U., A general Dirichlet problem for the complex Monge_Amp±re operator, Ann.

Polon. Math., 94 (2008), 131_147.

6. Cegrell U., Hed L., Subextension and approximation of negative plurisubharmonic functions,

Michigan Math. J., 56 (2008), no. 3, 593_601.

7. Czyz R., The complex Monge_Amp±re operator in the Cegrell classes, Dissertationes

Math., 466 (2009), 83 pp.

8. Hed L., Approximation of negative plurisubharmonic functions with given boundary values,

Internat. J. Math., 21 (2010), no. 9, 1135_1145.

9. Jarnicki M., Zwonek W., personal communication, Krakâw, Poland, 8th July 2011.

13

10. L¶ H. M., Nguy¹n H. X., Subextension of plurisubharmonic functions without changing

the Monge_Amp±re measures and applications, Ann. Polon. Math., 112 (2014), no. 1,

55_66.

11. L¶ H. M., Nguy¹n H. X., Nguy¹n T. V., The complex Monge_Amp±re equation in unbounded

hyperconvex domains in Cn, Complex Var. Elliptic Equ., 59 (2014), no. 12,

1758_1774

12. Nguy¹n H. X., Monge_Amp±re measures of maximal subextensions of plurisubharmonic

functions with given boundary values, Complex Var. Elliptic Equ., 60 (2015), no. 3,

429_435.

13. Ph¤m H. H., Pluripolar sets and the subextension in Cegrell's classes, Complex Var.

Elliptic Equ., 53 (2008), no. 7, 675_684.

Received September 21, 2016

Czasopismo ukazuje się w sposób ciągły on-line.
Pierwotną formą czasopisma jest wersja elektroniczna.