Microbial Respiration of Organic Carbon in Freshwater Microcosms: The Potential for Improved Estimation of Microbial CO2 Emission from Organically Enriched Freshwater Ecosystems

O. Roger Anderson


Respiratory CO2 emissions from laboratory freshwater microcosms enriched with organic C (glucose and amino acids) and kept in the dark at 24°C were compared to control microcosms without C enrichment for two different freshwater pond sources. The purpose was to estimate experimentally the rate of respiratory CO2 emission from organically polluted freshwater ecosystems compared to non-enriched water. Experiment One, used pond water collected at the Lamont-Doherty Earth Observatory campus; and Experiment Two used pond water, inoculated with natural detritus, obtained from North Carolina. At peak respiration, the net efflux of CO2 (enriched minus control) to the atmosphere was ~ 90 nmol min–1 L–1 (Day 7, Experiment One) and ~ 240 nmol min–1 L–1 (Day 3, Experiment Two). The corresponding net efflux of C to the atmosphere was 25 nmol C min–1 L–1 (Day 7, Experiment One) and 65 nmol C min–1 L–1 (Day 3, Experiment Two). Peak CO2 emissions from the organic-enriched microcosms expressed as μmol m–2 s–1 (as more typically reported for natural bodies of water) were 0.20 for Experiment One, and 0.42 for Experiment Two, at a surface layer depth of approx. 20 cm, i.e. the microcosm depth. There was a relatively large correlation between respiratory CO2 emission and bacterial densities in the organic-C enriched microcosms (r = 0.76), but a smaller correlation (r = 0.32) in the non-enriched, control microcosm. Further broad scale research, robustly sampling natural bodies of organically polluted water, is needed to confirm and better establish the results of the research reported here using microcosms.

Słowa kluczowe: Aquatic microbial CO2 emissions, atmospheric CO2, climate change, environmental change, organic aquatic pollution, protists

Alonzo-Sáez L., Sánchez O., Gasol J. M. (2012) Bacterial uptake of low molecular weight organics in the subtropical Atlantic: Are major phylogenetic groups different? Limnol. Oceanogr. 57: 798–808

Anderson O. R. (2014) Bacterial and heterotrophic nanoflagellate densities and C-biomass estimates along an Alaskan tundra transect with prediction of respiratory CO2 efflux. J. Eukaryot. Microbiol. 61: 11–16

Anderson O. R. (2016) The role of heterotrophic microbial communities in estuarine C budgets and the biogeochemical C cycle with implications for global warming: research opportunities and challenges. J. Eukaryot. Microbiol63: 394–409

Anderson O. R., Gorrell T., Bergen A., Kruzansky R., Levandowsky M. (2001) Naked amoebae and bacteria in an oil-impacted salt marsh community. Microb. Ecol. 42: 474481

Baines S. B., Pace M. L. (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater ecosystems. Limnol. Oceanogr. 36: 1078–1090

Beaver J. R., Crisman T. L. (1989) The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol17: 111–136

Berninger U.-G., Finlay B. J., Kuuppo-Leinikki P. (1991) Protozoan control of bacterial abundances in freshwater. Limnol. Oceanogr36: 139–147

Bjørnsen P. K., Riemann B., Horsted S. J., Nielsen T. G., Pock-Sten J. 
(1988) Trophic interactions between hteterotrophic nanoflagellates and bacterioplankton in manipulated seawater enclosures. Limnol. Oceanogr33: 409420

Bloem J., Bär-Gilissen M.-J. B. (1989) Bacterial activity and protozoan grazing potential in a stratified lake. Limnol. Oceanogr34: 297–309

Bong C. W., Lee C. W. (2011) The contribution of heterotrophic nanoflagellate grazing towards bacterial mortality in tropical waters: comparing estuaries and coastal ecosystems. Mar. Freshwater Res62: 414420

Broecker W. S. (1975) Climate change: are we on the brink of a pronounced global warming? Science 189: 460

Caron D. (1987) Grazing of attached bacteria by heterotrophic microflagellates. Microb. Ecol. 13: 203–218

Carpenter S. R., Stanley E. H., Vander Zanden M. J. (2011) State of the World’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour36: 75–99

Carvalho R., Duarte P. (2013) Carbon fluxes in a coastal area of northern Portugal. Limnetica32: 229–244

Casper P., Maberly S. C., Hall G. H., Finlay B. J. (2000) Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochem49: 1–19

Chen B., Liu H., Landry M. R., Chen M., Sun J., Shek L., Chen X., Harrison P. J. (2009) Estuarine nutrient loading affects phytoplankton growth and microzooplankton grazing at two contrasting sites in Hong Kong coastal waters. Mar. Ecol. Prog. Ser379: 7790

Chróst R. J., Münster U., Rai H., Albrecht D., Witzel P. K., Overbeck J. (1989) Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake. J. Plankton Res11: 223–242.

Cole J. J., Kinne O. (2013) Freshwater Ecosystems and the Carbon Cycle. Olendorf/Luhe: International Ecology Institute

Cole J. J., Findlay S., Pace M. L. (1988) Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Mar. Ecol. Prog. Ser43: 1–10.

Cole J. J., Prairie Y. T., Caraco N. F, McDowell W. H., Tranvik L. J., Striegl R. G., Duarte C. M., Kortelainen P., Downing J. A., Middelburg J. J., Melack J. (2007) Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–164

Confer D. R., Logan B. E., Aiken B. S., Kirchman D. L. (1995) Measurement of dissolved free and combined amino acids in unconcentrated wastewaters using high performance liquid chromatography. Water Environ. Res67: 118–125.

Crawford C. C., Hobbie J. E., Webb K. L. (1974) The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55: 551–563

Dai Y., Yang Y., Wu Z., Feng Q., Xie S., Liu Y. (2016) Spatiotemporal variation in planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic levels. Appl. Microbiol. Biotech100: 4161–4175

Daniel I., DeGrandpre M., Farias, L. (2013) Greenhouse gas emissions from the Tubul-Raqui estuary (central Chile). Estuar. Coast. Shelf Sci134: 3144

Davidson T. A., Audit J., Svenning J.-C., Lauridsen T. L., Søndergaard M., Landkildehus F., Larsen S. E., Jeppesen E. (2015) Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Global Change Biol21: 4449–4463

del Giorgio P. A., Cole J. J., Cimbleris A. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385: 148–151

del Giorgio P. A., Gasol J. I. M., Vaque D., Mura P., Agusti S., Duarte C. M. (1996) Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr41: 1169–1179

Edwards D. R., Daniel T. C. 1992. Environmental impacts of on-farm poultry waste disposal – A review. Bioresource Technol41: 9–33

Frankignoulle M., Abril G., Borges A., Bourge I., Canon C., DeLille B., 
Libert E., Theate J. M. (1998) Carbon dioxide emission from European estuaries. Science 282: 434–436

Friedlingstein P., Houghton R. A., Marland G., Hackler J., Boden T. A., Conway T. J., Canadell J. G., Raupach M. R., Ciais P., Le Quéré C. (2010) Update on CO2 emissions. Nature Geoscience 3: 811–812

Grasset C., Abril G., Guillard L., Delolme C., Bornette G. (2016) Carbon emission along a eutrophication gradient in temperate riverine wetlands: effect of primary productivity and plant community composition. Freshwater Biol. doi:10.1111/fwb.12780

Hanson R. B., Snyder J. (1980) Glucose exchanges in a salt marsh-estuary: Biological activity and chemical measurements. Limnol. Oceanogr. 25: 633–642.

Hobbie J. E., Daley R. J., Jasper S. (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Microbiol33: 1225–1228

Iriarte A., de Madariaga I., Diez-Garagarza F., Revilla M., Orive E. 
(1996) Primary production, respiration and nitrification in a shallow temperate estuary during summer. J. Exp. Mar. Biol. Ecol. 208: 127–151

Islam Md. I., Khan S., Tanaka M. 2004. Waste loading in shrimp and fish processing effluents: potential source of hazards to the coastal and nearshore environments. Mar. Pollut. Bull. 49: 103–110

Jiang L. Q., Cai W. J., Wang Y. C. (2008) A comparative study of carbon dioxide degassing in river – and marine dominated estuaries. Limnol. Oceanogr53: 26032615

Karl T. R., Trenberth K. E. (2003) Modern global climate change. Science 302: 1719–1723

Kahn L., Wayman C. (1964) Amino acids in raw sewage and sewage effluents. Water Pollut. Control 36: 1368–1371

Kuuppo-Leinikki P. (1990) Protozoan grazing on planktonic bacteria and its impact on bacterial population. Mar. Ecol. Prog. Ser63: 227–238

Liu H., Zhang Q., Katul G. G., Cole J. J., Chapin III, F. S., MacIntyre S. (2016) Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir. Environ. Res. Lett11: 064001

Meon B., Amon R. M. W. Heterotrophic bacterial activity and fluxes of dissolved free amino acids and glucose in the Arctic rivers Ob, Yenisei and the adjacent Kara Sea. Aquat. Microb. Ecol. 37: 121–135

Qin B. Q., Gao G., Zhu G. W., Zhang Y. L., Song Y. Z., Tang X. M., Deng J. M. (2013) Lake eutrophication and its ecosystem response. Chinese Sci. Bull58: 961–970

Painter H. A., Viney M. (1959) Composition of a domestic sewage. J. Biochem. Microbiol1: 143–162

Pollard P. C., Ducklow H. (2011) Ultrahigh bacterial production in a eutrophic subtropical Australian river: Does viral lysis short-circuit the microbial loop? Limnol. Oceanogr56: 1115–1129

Richey J. E., Melack J. M., Aufdenkampe A. K., Ballester V. M., Hess L. L. (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2Nature 416: 617–620

Sarma V., Viswanadham R., Rao G. D., Prasad V. R., Kumar B. S. K., Naidu S. A., Kumar N. A., Rao D. B., Sridevi T., Krishna M. S., Reddy N. P. C., Sadhuram Y., Murty T. V. R. (2012) Carbon dioxide emissions from Indian monsoonal estuaries, Geophys. Res. Lett39: 1–5

Schrier-Uijl A. P., Veraart A. J., Leffelaar P. A., Berendse F., Veenendaal E. M. (2011) Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochem102: 265–279

Scully Jr., F. E., Howell G. D., Penn H. H., Mazina K., Johnson J. D. (1988) Small molecular weight organic amino nitrogen compounds in treated municipal waste water. Environ. Sci. Technol. 22: 1186–1190

Seekell D. A., Carr J. A., Gudasz C., Karlsson J. (2014) Upscaling carbon dioxide emissions from lakes. Geophys. Res. Lett41: 7555–7559

Shiah F.-K., Ducklow H. W. (1994) Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA. Mar. Ecol. Prog. Ser. 103: 297–308.

Smith E. M. (1998) Coherence of microbial respiration rate and cell-specific bacterial activity in a coastal planktonic community. Aquat. Microb. Ecol16: 27–35

Smith V. H., Tilman G. D., Nekola J. C. (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut100: 179–196

Solomon S., Plattner G.-K., Knuti R., Friedlingstein P. (2009) Irreversible climate change due to carbon dioxide emissions. Nat. Acad. Sci. Proc106: 1704–1709

Subrahmanyam P. V. R., Sastry A., Prabhakara R., Pillai C. (1960) Amino acids in sewage sludges. Water Pollut. Control 32: 344–350

Valliéres C, Retamal L., Ramlal P., Osburn C. L. Vincent W. F. (2008) Bacterial production and microbial food web structure in a large arctic river and the coastal Arctic Ocean. J. Marine Syst. 74: 756–773

Wilkinson G. M., Buelo C. D., Cole J. J., Pace M. L. (2016) Exogenously produced CO2 doubles the CO2 efflux from three north temperate lakes. Geophys. Res. Lett43: 1996–2003

Williams P. J. leB. (1981) Microbial contribution to overall marine plankton metabolism: direct measures of respiration. Oceanol. Acta 4: 359–364

Zimmermann R., Iturriaga R., Becker-Birck J. (1978) Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. Environ. 
 36: 926–935

Czasopismo w darmowym dostępie.

Czasopismo ukazuje się w sposób ciągły on-line.
Pierwotną formą czasopisma jest wersja elektroniczna.