Low-level genetic diversity of opalinid morphotypes from the digestive tract of Hoplobatrachus rugulosus (Batrachia, Amphibia) in Thailand

Eleni Gentekaki,

Chitchai Chantangsi


Opaline is an unusual group of protists, characterized by the presence of flagella covering their whole body. They reside in the intestinal tracts of various animals, most notably amphibians. While there is a wealth of data regarding the morphological features of opalines, molecular data are extremely sparse. Consequently, the extent of diversity of this understudied group remains unknown. Here, we examine opalines from the intestinal tract of the amphibian Hoplobatrachus rugulosus in Thailand. We provide micrographs obtained from light and scanning electron microscopy of various opalinid morphotypes. Furthermore, we enrich the database of opaline sequences by providing new molecular data of the small subunit ribosomal DNA gene of these species. In our phylogenetic analyses, the newly derived sequences form a cluster sister to Protoopalina.


Słowa kluczowe: endocommensal, molecular phylogeny, protist, Slopalinida, Thailand

Alfellani M. A., Taner-Mulla D., Jacob A. S., Imeede C. A., Yoshikawa H., Stensvold C. R., Clark C. G. (2013) Genetic diversity of Blastocystis in livestock and zoo animals. Protist 164: 497–509

Amiet J.-L., Affa’a F.-M. (1985) A propos des strategies d’infestation chez les protozoaires parasites ou endocommensaux des amphibiens anoures du Cameroun. Rev. Ecol. (Terre Vie)40: 389–398

Capella-Gutierrez S., Silla-Martinez J. M., Gabaldon T. (2009) 
trimAl: a
 tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973

Delvinquier B. L. J., Desser S. S. (1996) Opalinidae (Sarcomastigophora) in North American Amphibia. Genus Opalina Purkinje and Valentin, 1835. Syst. Parasitol33: 33–51

Delvinquier B. L. J., Patterson D. J. (1993) The Opalines. In: Kreier, J. P., Baker, J. R. (Eds), Parasitic Protozoa. Academic Press, San Diego, pp: 247–325

Delvinquier B. L. J., Markus M. B., Passmore N. I. (1991a) Opalinidae in African Anura I. Genus Opalina. Syst. Parasitol. 19: 119–146

Delvinquier B. L. J., Markus M. B., Passmore N. I. (1991b) Opalinidae in African Anura II. Genera Protozelleriella n. g. and ZelleriellaSyst. Parasitol. 19: 159–185

Delvinquier B. L. J., Markus M. B., Passmore N. I. (1992) Opalinidae in African Anura III. Genus CepedeaSyst. Parasitol. 24: 53–80

Delvinquier B. L. J., Markus M. B., Passmore N. I. (1995) Opalinidae in African Anura IV. Genus ProtoopalinaSyst. Parasitol. 30: 81–120

Evans K. M., Wortley A. H., Simpson G. E., Chepurnov V. A., Man D. G. (2008) A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (Bacillariophyta). J. Phycol44: 215–231

Finlay B. J., Esteban G. F., Brown S., Fenchel T., Hoef-Emden K. (2006) Multiple cosmopolitan ecotypes within a microbial eukaryote morphospecies. Protist157: 377–390

Gentekaki E., Lynn D. H. (2010) Evidence for cryptic speciation in Carchesium polypinum Linnaeus, 1758 (Ciliophora: Peritrichia) inferred from mitochondrial, nuclear and morphological markers. J. Eukaryot. Microbiol57: 508–519

Katoh K., Misawa K., Kuma K. I., Miyata T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res30: 3059–3066

Katz L. A., de Berardinis J., Hall M. S., Kovner A. M., Dunthorn M., Muse S. V. (2011) Heterogeneous rates of molecular evolution among cryptic species of the ciliate morphospecies Chilodonella uncinataJ. Mol. Evol73: 266–272

Kimura M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol16: 111–120

Kostka M., Hampl V., Cepicka I., Flegr J. (2004) Phylogenetic position of Protoopalina intestinalis based on SSU rRNA gene sequence. Mol. Phylogenet. Evol. 33: 220–224

Lahr D. J. G., Laughinghouse H. D., Oliverio A. M., Gao F., Katz L. A. (2014) How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on Earth. Bioessays 36: 950–959

Maslov D. A., Votypka J., Yurchenko V., Lukes J. (2013) Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol29: 43–52

McCallum F., Maden B. E. H. (1985) Human 18S ribosomal RNA sequence inferred from DNA sequence. Biochem. J. 232: 725–733

Medlin L., Elwood H. J., Stickel S., Sogin M. L. (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491–499

Miller M. A., Pfeiffer W., Schwartz T. (2010) “Creating the CIPRES science gateway for inference of large phylogenetic trees” in proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA pp: 1–8

Mohammad K. N., Badrul M. M., Mohamad N., Zainal-Abidin A. H. (2013) Protozoan parasites of four species of wild anurans from a local zoo in Malaysia. Trop. Biomed30: 615–620

Nishi A., Ishida K., Endoh H. (2005) Reevaluation of the evolutionary position of opalinids based on 18S rDNA and α- and β-tubulin gene phylogenies. J. Mol. Evol60: 695–705

Ronquist F., Huelsenbeck J. P. (2003) MrBayes3, Bayesian inference under mixed models. Bioinformatics 19: 1572–1574

Saez A. G., Probert I., Geisen M., Quinn P., Young J. R., Medlin L. K. (2003). Pseudo-cryptic speciation in coccolithophores. Proc. Natl. Acad. Sci. U.S.A. 100: 7163–7168

Sanchez R., Serra F., Tarraga J., Medina I, Carbonell J., Pulido L., de Maria A., Capella-Gutierrez S., Huerta-Cepas J., Gabaldon T., Dopazo J., Dopazo H. (2011) Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res39: W470–W474

Stamatakis A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690

Stensvold C. R., Alfellani M., Clark G. C. (2012) Levels of genetic diversity vary dramatically between Blastocystis subtypes. Infect. Genet. Evol12: 263–273

Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol28: 2731–2739

Yang W. C. T. (1960) On the continuous culture of opalinids. J. Parasitol46: 32

Yurchenko V., Lukes J., Tesarova M., Jirku M., Maslov D. A. (2008) Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus CrithidiaProtist 159: 99–114

Czasopismo w darmowym dostępie.

Czasopismo ukazuje się w sposób ciągły on-line.
Pierwotną formą czasopisma jest wersja elektroniczna.