A Half-century of Research on Free-living Amoebae (1965-2017): Review of Biogeographic, Ecological and Physiological Studies

O. Roger Anderson


This is a review of over 400 published research papers on free-living, non-testate amoebae during the approximate last half century (1965-2017) particularly focusing on three topics: Biogeography, Ecology, and Physiology. These topics were identified because of the substantial attention given to them during the course of the last half century, and due to their potential importance in issues of local and global expanse, such as: aquatic and terrestrial stability of habitats, ecosystem processes, biogeochemistry and climate change, and the role of eukaryotic microbes generally in ecosystem services. Moreover, there are close epistemological and thematic ties among the three topics, making a synthesis of the published research more systematic and productive. The number of reviewed publications for each of the three individual topics is presented to illustrate the trends in publication frequencies during the historical period of analysis.  Overall, the number of total publications reviewed varied somewhat between 1965 and early 2000 (generally less than 10 per year), but increased to well over 10 per year after 2000. The number of Biogeography and Ecology studies identified in the online citations increased substantially after the mid 1990s, while studies focusing on Physiology were relatively more abundant in the first decade (1965-1974) and less were identified in the 1985 to 2004 period. Citations to the literature are listed in tables for each of the three topics for convenience in retrieving references to specific aspects, and representative examples of the cited research in the tables are reviewed in the text under subheads dedicated to each of the three topics. Biogeographic studies largely focused on the geographic distribution and localized patterns of occurrence of amoebae, with more recent studies incorporating more attention to likely correlates with environmental and biotic factors in the distribution and community composition of amoebae. Ecological studies reviewed in the later decades tended to focus more on community dynamics, the effects of environmental variables on communities (including climate-related topics), a trend toward more physiological ecology studies, combined field-based and experimental studies, and incorporation of newer methodologies such as molecular genetics. In general, physiology studies in the first decades of the review tended to focus on topics of cell physiology such as basic biochemistry, enzyme assays, mechanisms of cell division and development, encystment, and motility. Later studies examined broader topics such as osmoregulation, nutrition, fine structure evidence of cellular changes during the life cycle (including encystment and excystment), and issues related to asexual and sexual reproduction, with increasing substantial evidence of evolutionary patterns and phylogenetics based on molecular evidence.  A final section on Conclusions and Recommendations summarizes the findings and presents some potentially productive approaches to future research studies on Amoebozoa within the three designated topics of analysis.

Słowa kluczowe: Amoebozoa, aquatic ecosystems, biogeography, ecology, environmental science, microbial physiology, terrestrial ecosystems, protistology



Anderson O. R. (2017) Amoebozoan Lobose Amoebae (Tubulinea, Flabellinea, and others). In: Handbook of the Protists, (Eds. J. M. Archibald, A. G. B. Simpson, C. Slamovits) Springer-Verlag, International, pp. 135, DOI 10.1007/978-3-319-32669-6_2-1

Beare M. H., Coleman D. C., Crossley D. A. Jr., Hendrix P. F., Odum E. P. (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. In: The significance and regulation of soil biodiversity. (Eds. H. P. Collins, G. P. Robertson, M. J. Klug) Kluwer, Netherlands, pp. 5–22

Behets J., Declerck P., Delaedt Y., Verelst L., Ollevier F. (2006) Quantitatve detection and differentiation of free-living amoeba species using SYBR Green-based real-time PCR melting curve analysis. Curr. Microbiol53: 506509

Bradley S. G., Marciano-Cabral F. (1996) Diversity of free-living ‘naked” amoeboid organisms. J. Ind. Microbiol17: 314321

Cavalier-Smith T., Fiore-Donno A. M., Chao E., Kudryavtsev A., Berney C., Snell E. A., Lewis R. (2015) Multigene phylogeny resolves deep branching Amoebozoa. Mol. Phylogenet. Evol. 83: 293304

Dellinger O. P. (1906) Locomotion of Amoebae and allied forms. J. Exp. Zool3: 337–358

Douglas-Helders G. M. (2002) Epidemiology of amoebic gill disease. Ph. D. Thesis, University of Tasmania, 165 pp.

Fiore-Donno A. M., Weinert J., Wubet T., Bonkowski M. (2016) Metacommunity analysis of amoeboid protists in grassland soils. Sci. Rep6: 19068 DOI: 10.1038/srep19068

Fiore-Donno A. M., Weinert J., Wubet T., Bonkowski M. (2016) Metacommunity analysis of amoeboid protists in grassland soils. Sci. Rep6: 19068 DOI: 10.1038/srep19068

Geisen S., Bonkowski M. (2017) Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Appl. Soil. Ecol., doi.org/10.1016/j.apsoil.2017.05.021

Geisen S., Tveit A. T., Clark I. M., Richter A., Svenning M. M., Bonkowski M., Urich T. (2015) Metatranscriptomic census of active protists in soils. Int. Soc. Microb. EcolJ9: 2178–2190

Hauer G., Rogerson A. (2005) Heterotrophic protozoa from hypersaline environments. In: Adaptations to life at high salt concentrations in Archaea, Bacteria, and Eukarya. (Ed. N. Gunde-Cimerman et al.) Springer, Netherlands, pp. 519–539

Król-Turminska K., Olender A. (2017) Human infections caused by free-living amoebae. Ann. Agric. Environ. Med24: 254–260

Kuiper M. W., Valster R. M., Wullings B. A., Boonstra H., Smidt H., van der Kooij D. (2006) Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Appl. Env. Microbiol. 72: 5750–5756

Lahr D. J. G., Grant J., Nguyen T., Lin J. H., Katz L. A. (2011) Comprehensive phylogenetic reconstruction of Amoebozoa based on concatenated analyses of SSU-rDNA and actin genes. PLoS One: e22780, Doi.org/10.1371/journal.pone.0022780

Lei Y.-L., Stumm K., Wickham S. A., Berninger U.-G. (2014) Distributions and biomass of benthic ciliates foraminifera and amoeboid protists in marine, brackish, and freshwater sediments. J. Eukaryot. Microbiol61: 493–508

Leidy J. (1875) On the mode in which Amoeba swallows its food. Proc. Acad. Natl. Sci. Philadelphia, p. 143

Leidy J. (1878) Amoeba proteusAm. Naturalist 12: 235–238

Mast S. O. (1910) Reactions in Amoeba to light. J. Exp. Zool9: 265–277

Mast S. O. (1926) Structure, movement, locomotiom, and stimulation in Amoeba. J. Morph. Physiol41: 347–425

Metcalf M. M. (1910) Studies upon Amoeba. J. Exp. Zool. A Ecol. Integr. Physiol9: 301–331

Pawlowski J., Burki F. (2009) Untangling the phylogeny of amoeboid protists. J. Eukaryot. Microbiol56: 16–25

Pritchard A. (1834) The Natural History of Animalcules. Whittaker and Co., London, pp. 22–24

Riviére D., Szczebara F. M., Berjeaud J.-M., Frère J., Héchard Y. (2006) Development of a real-time PCR assay for quantification of Acanthamoeba trophozoites and cysts. J. Microb. Meth64: 78–83

Rodriguez-Zaragoza S. (1994) Ecology of free-living amoebae. Crit. Rev. Microbiol20: 225–241

Schuster F. L., Visvesvara G. S. (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol34: 1001–1027

Smirnov A.V., Chao E. E., Nassonova E. S., Cavalier-Smith T. (2011) A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162: 545–570

Tekle Y. I., Grant J., Anderson O. R., Nerad T. A., Cole J. C., Patterson D. J., Katz L. A. (2008) Phylogenetic placement of diverse amoebae inferred from multigene analyses and assessment of clade stability within ‘‘Amoebozoa’’ upon removal of varying rate classes of SSU-rDNA. Mol. Phylogenet. Evol47: 339–352

Visvesvara G. S. (2010). Free-living amoebae as opportunistic agents of human disease. Int. J. Neuroparasitol. 1: doi:10.4303/jnp/N100802




Amaral-Zettler L. A., Cole J., Laatsch A. D., Nerad T. A., Anderson O. R., Reysenbach A.-L. (2006) Vannella epipetala n. sp. isolated from the leaf surface of Spondias nombin (Anacardiaceae) growing in the dry forest of Costa Rica. J. Eukaryot. Microbiol. 53: 522–530

Amin N. M., Keong P. C., Shing C. K. (2008) The identification and distribution of naked amoebae in the water and sediments of the Setiu wetlands, Terengganu. J. Sustain. Sci. Manage3: 23–29

Anderson O. R. (2000) Abundance of terrestrial gymnamoebae at a Noreastern U. S. site: A four-year study, including the El Niño winter of 1997–1998. J. Eukaryot. Microbiol4: 148–155

Armstrong E., Rogerson A., Leftley J. W. (2000) The abundance of heterotrophic protists associated with intertidal seaweeds. Estuar. Coastal Shelf Sci50: 415–424

Bagatini I. L., Spínola A. L. G., Peres B. de M., Mansano A. da S., Rodrigues M. A. A., Batalha M. A. P. L., de Lucca J. V., Godinho M. J. L., Tundisi T. M., Seleghim M. H. R. (2013) Protozooplankton and its relationship with environmental conditions in 13 bodies of the Mogi-Guacu basin – SP, Brazil. Biota Neotrop13: 152–160.

Bamforth S. S. (1976) Rhizosphere-soil microbial comparisons in sub-tropical forests of southeastern Louisiana. Trans. Am. Microsc. Soc. 95: 613–621

Bamforth S. S. (1984) Microbial distributions in Arizona deserts and woodlands. Soil Biol. Biochem16: 133–137

Bamforth S. S. (2004) Water film fauna of microbiotic crusts of a warm desert. J. Arid Environ56: 413–423

Bamforth S. S. (2007) Protozoa from aboveground and ground soils of a tropical rain forest in Puerto Rico. Pedobiologia 50: 515–525

Bass P., Bischoff P. J. (2001) Seasonal variability in abundance and diversity of soil gymnamoebae along a short transect in southeastern USA. J. Eukaryot. Microbiol48: 475–479

Baumgartner M., Yapi A., Gröbner-Ferreira R., Stetter K. O. (2003) Cultivation and properties of Echinamoeba thermarum n. sp., an extremely thermophilic amoeba thriving in hot springs. Extremophiles 7: 267–274

Bell E. M., Weithoff G. (2008) Recruitment of Heliozoa, rhizopods and rotifers from the sediments of an extremely acidic lake during spring and early summer. Lake Reserv. Manage13: 105–115

Bhattacharya A., Ghosh M., Choudhury A. (1987) Seasonal abundance of Acanthamoeba rhysodes (Singh, 1952) (Protozoa: Gymnamoebia) in a mangrove litter-soil ecosystem of Gangetic-Estuary, India. J. Protozool34: 403–405

Bischoff P. J., Anderson O. R. (1998) Abundance and diversity of gymnamoebae at varying soil sites in northeastern U.S.A. Acta Protozool37: 17–21

Bovee E. C. (1965) An ecological study of amebas from a small stream in Northern Florida. Hydrobiologia 25: 69–87

Brown S., Smirnov A. V. (2004) Diversity of gymnamoebae in grassland soil in southern Scotland. Protistology 3: 191–195

Brown T. J., Cursons R. T. M., Keys E. A. (1982) Amoebae from Antarctic soil and water. Appl. Environ. Microbiol. 44: 491–493

Burnett B. R. (1977) Quantitative sampling of microbiota of the deep-sea benthos – I. Sampling techniques and some data from the abyssal central North Pacific. Deep-Sea Res24: 781–789

Butler H. G., Rogerson A. (2000) Naked amoebae from the benthic sediments in the Clyde Sea area, Scotland. Ophelia 53: 37–54

Caron D. A., Gast R. J., Garneau M. E. (2017) Sea ice as a habitat for micrograzers. In: Sea Ice (3rd Ed.), (Ed. D. N. Thomas). Wiley, Chichester, pp. 370–393

Davidson L. A., Davidson A. E. (2005) The range of protists in Mono Lake, a hypersaline soda lake in the eastern sierras. 
J. Eukaryot. Microbiol52: 11S

Davis P. G., Caron D. A., Sieburth J. McN. (1978) Oceanic amoebae from the North Atlantic: Culture, distribution, and taxonomy. Trans. Am. Microsc. Soc. 97: 73–88

Decamp O., Tsujino M., Kamiyama T. (1999) Abundance of naked amoebae in sediments of Hiroshima Bay, Seto Inland Sea of Japan. J. Eukaryot. Microbiol46: 160–164

de Jonckheere J. F., Murase J., Opperdoes F. R. (2011) A new thermophilic heterolobosean amoeba, Fumarolamoeba ceborucoi gen. nov., sp. nov., isolated near a fumarole at a volcano in Mexico. Acta Protozool50: 43–50

Dillon R. D., Walsh G. L., Bierle D. A. (1968) A preliminary survey of Antarctic meltwater and soil amoeba. Trans. Am. Microsc. Soc. 87: 486–492

Douglas-Helders G. M., O’Brien, D. P., McCorkell B. E., Zilberg D., Gross A., Carson J., Nowak B. F. (2003) Temporal and spatial distribution of paramoebae in the water column – a pilot study. J. Fish Dis26: 231–240

Dumack K., Koller R., Weber B., Bonkowski M. (2016) Estimated abundance and diversity of heterotrophic protists in South African biocrusts. S. Afr. J. Sci112: Art. #2015-0302, 5 pages. http://dx.doi.org/10.17159/ sajs.2016/20150302

Ettinger M. R., Webb S. R., Harris S. A., McIninch S. P., Garman G. C., Brown B. L. (2003) Distribution of free-living amoebae in James River, Virginia, USA. Parasitol. Res89: 6–15

Feest A., Madelin M. F. (1988) Seasonal population changes of myxomycetes and associated organisms in four woodland soils. FEMS Microbiol. Ecol. 53: 133–140

Fernandez-Leborans G., Valgañon B., de Zaldumbide M. C. (1999) Characterization of a marine sublittoral area facing the open sea, using epibenthic protists. Bull. Mar. Sci65: 725–743

Fernandez-Leborans G., Valgañon B., Perez E. (2001) Characterization of the protistan communities inhabiting the benthic area of an inner estuary. B. Mar. Sci68: 451–467

Finlay B. J., Curds C. R., Bamforth S. S., Bafort J. M. (1987) Ciliated protozoa and other microorganisms from two African soda Lakes (Lake Nakuru and Lake Simbi, Kenya). Archiv f. Protistenk133: 81–91

Garstecki T., Arndt H. (2000) Seasonal abundances and community structure of benthic rhizopods in shallow lagoons of the southern Baltic Sea. Europ. J. Protistol36: 103–115

Garcia-Sanchez A. M., Ariza C., Ubeda J. M., Martin-Sanchez P. M., Jurado V., Bastian F., Alabouvette C., Saiz-Jimenez C. (2013) Free-living amoebae in sediments from the Lascaux Cave in France. Int. J. Speleo42: 9–13

Geisen S., Fiore-Donno A. M., Walochnik J., Bonkowski M. (2014) Acanthamoeba everywhere: high diversity of Acnthamoeba in soils. Parasitol. Res113: 3151–3158

Gittelson S. M., Ferguson T. (1971) Temperature-related occurrence of protozoa. Hydrobiologia 37: 49–54

Griffths B. S. (2002) Spatial distribution of soil protozoa in an upland grassland. Europ. J. Protistol37: 371–373

Hada Y. (1967) The fresh-water fauna of the protozoa in Antarctica. Japanese Antarctic Research Expedition scientific reports. Special Issue 1: 209–215

Hauer G., Rogerson A., Anderson O. R. (2001) Platyamoeba pseudovannellida n. sp., a naked amoeba with wide salt tolerance isolated from the Salton Sea, California. J. Eukaryot. Microbiol48: 663–669

Juhl A. R., Anderson O. R. (2014) Geographic variability in amoeboid protists and other microbial groups in the water column of the lower Hudson River Estuary (New York, USA). Estuar. Coast. Mar. Sci151: 45–53

Kiss Á. K., Ács É., Kiss K. T., Török J. K. (2009) Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur. J. Protistol. 45: 121–138

Kudryavtsev A., Pawlowski J. (2013) Squamamoeba japonica n. g. n. sp. (Amoebozoa): A deep-sea amoeba from the Sea of Japan with a novel cell coat structure. Protist 164: 13–23

Lara E., Mitchell E. A. D., Moreira D., Garcia, P. L. (2011) Highly diverse and seasonally dynamic protist community in a pristine peat bog. Protist 162: 14–32

Li J., Li M. G., Yang J., Wang C. F., Ai Y., Xu R. L. (2010) The community structure of soil Sarcodina in Baiyun Mountain, Guangzhou, China. Eur. J. Soil Biol46: 1–5

Lighthart B. (1969) Planktonic and benthic bacterivorous protozoa at eleven stations in Puget Sound and adjacent Pacific Ocean. J. Fish Res. Bd. Canada 26: 299–304

Lugo A., Alcocer J., Sanchez Ma. del R., Escobar E. (1998) Littoral protozoan assemblages from two Mexican hyposaline lakes. Hydrobiologia 381: 9–13

Mayes D. F., Rogerson A., Marchant H. J., Laybourn-Parry J. (1998) Temporal abundance of naked bacterivore amoebae in coastal East Antarctica. Estuar. Coastal Shelf Sci46: 565–572

Mayzlish-Gati E., Steinberger Y. (2007) Ameba community dynamics and diversity in a desert ecosystem. Biol. Fertil. Soils 43: 357–366

Moran D. M., Anderson O. R., Dennett M. R., Caron D. A., Gast R. J. 
(2007) A description of seven Antarctic marine gymnamoebae including a
 new subspecies, two new species and a new genus: Neoparamoeba aestuarina antarctica n. subsp., Platyamoeba oblongata n. sp., Platyamoeba contorta n. sp. and Vermistella Antarctica n. gen. n. sp. J. Eukaryot. Microbiol54: 169–183

Mrva M. (2005) Diversity of active gymnamoebae (Rhizopoda, Gymnamoebae) in mosses of the Malé Karpaty Mts (Slovakia). Ekol. Bratislava 24: 51–58

Munson D. A. (1992) Marine Amoebae from Georgia coastal surface waters. Trans. Am. Microsc. Soc. 111: 360–364

Murzov S. A., Caron D. A. (1996) Sporadic high abundances of naked amoebae in Black Sea plankton. Aquat. Microb. Ecol. 11: 161–169

Muylaert K., Van Mieghem R., Sabbe K., Tackx M., Vyverman W. (2000) Dynamics and trophic roles of heterotrophic protists in the plankton of a freshwater tidal estuary. Hydrobiol432: 25–36

Ning Y.-Z., Shen Y.-F. (1998) Soil protozoa in typical zones of China: I. Faunal characteristics and distribution of species. Chinese J. Zool. 44: 5–10 (in Chinese)

Niyyati M., Latifi A. (2017) Free living amoeba belonging to Vannella spp. isolated from a hotspring in Amol City, Northern Iran. Novel. Biomed5: 85–88

Old K. M., Oros J. M. (1980) Mycophagous amoebae in Australian forest soils. Soil Biol. Biochem12: 169–175

Page F. C. (1971) A Comparative study of five fresh-water and marine species of Thecamoebidae. Trans. Am. Microsc. Soc. 90: 157–173

Page F. C. (1976) Some comparative notes on the occurrence of Gymnamoebia (Protozoa: Sarcodina) in British and American habitats. Trans. Am. Microsc. Soc. 95: 385–394

Patcyuk M. K., Dovgal I. V. (2012) Biotopic distribution of naked amoebas (Protista) in Ukrainian Polissya area. Vstn. Zool. 46: 36–41

Patsyuk M. K. (2014) Morphotypes in naked amoebas (Protista): Distribution in water bodies of Zhytomyr and Volyn Polissia (Ukraine) and possible ecological signifcance. Vstn. Zool. 48: 547–552

Revill D. L., Stewart K. W., Schlichting H. E., Jr. (1967) Passive dispersal of viable algae and protozoa by certain cranefiles and midges. Ecology 48: 1023–1027

Rivera F., Lugo A., Ramirez E., Bonilla P., Calderon A., Rodriguez S., Ortiz R., Gallegos E., Labastida A., Chavez M. P. (1992) Seasonal distribution of air-borne protozoa in Mexico City and its suburbs. Water Air Soil Poll61: 17–36

Rodríguez-Zaragoza S., García S. (1997) Species richness and abundance of naked amebae in the rhizoplane of the desert plant Escontria chiotilla (Cactaceae). J. Eukaryot. Microbiol44: 122–126

Rodríguez-Zaragoza S., Mayzlish E., Steinberger Y. (2005) Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev desert, Israel. Microbial Ecol49: 134–141

Rogerson A. (1991) On the abundance of marine naked amoebae on the surfaces of five species of macroalgae. FEMS Microbiol. Ecol85: 301–312

Rogerson A., Detwiler A. (1999) Abundance of airborne heterotrophic protists in ground level air of South Dakota. Atmos. Res51: 35–44

Rogerson A., Gwaltney C. (2000) High numbers of naked amoebae in the planktonic waters of a mangrove stand in southern Florida, USA. J. Eukaryot. Microbiol47: 235–241

Rogerson A., Hauer G. (2002) Naked amoebae (Protozoa) of the Salton Sea, California. Hydrobiologia 473: 161–177

Rogerson A., Laybourn-Parry J. (1992) The abundance of marine naked amoebae in the water column of the Clyde Estuary. Estuar. Coastal Shelf Sci34: 187–196

Sawyer T. K. (1971) Isolation and identification of free-living marine amoebae from Upper Chesapeake Bay, Maryland. Trans. Am. Microsc. Soc. 90: 43–51

Sawyer T. K. (1990) Marine amoebae in waters of Chincoteague Bay, Virginia: Ecological significance of “old” and “new” species. Va. J. Sci41: 433–440

Sawyer T. K., Nerad T. A., Visvesvara G. S. (1992) Acanthamoeba jacobsi sp. n. (Protozoa: Acanthamoebidae) from sewage contaminated ocean sediments. J. Helminthol. Soc. Wash59: 223–226

Seneviratna A. G. D. H., Waidyasekera P. L. D. (1995) Ecology and distribution of soil protozoa in the Bellanwila wetland. Vidyodaya J. Sci5: 79–87

Shatilovich A. V., Shmakova L. A., Mylnikov A. P., Cilichinsky D. A. (2009) Chapter 8 Ancient protozoa isolated from permafrost. In: Permafrost Soils, Soil Biology 16, (Ed. R. Margesin) Berlin, Springer-Verlag, pp. 97–115

Shmakova L. A., Rivkina E. M. (2015) Viable eukaryotes of the phylum Amoebozoa from the Arctic permafrost. Paleontol. J49: 572–577

Sleigh M. A., Baldock B. M., Baker J. H. (1992) Protozoan communities in chalk streams. Hydrobiologia 248: 53–64

Smirnov A. V. (2007) Cryptic freshwater amoeba species in the bottom sediments of Nivå Bay (Øresund, Baltic Sea). Europ. J. Protistol43: 87–94

Smirnov A. V., Goodkov A. V. (1996) Systematic diversity of gymnamoebae in the bottom sediments of a freshwater lake in Karelia (Lobosea, Gymnamoebia). Zoosyst. Rossica 4: 201–203

Smirnov A. V., Goodkov A. V. (2004) Ultrastructure and geographic distribution of the genus Paradermamoeba (Gymnamoebia, Thecamoebidae) Eur. J. Protistol40: 113–118

Smirnov A. V., Thar R. (2003) Spatial distribution of Gymnamoebae (Rhizopoda, Lobosea) in brackish-water sediments at the scale of centimeters and millimeters. Protist 154: 359–369

Smirnov A. V., Thar R. (2004) Vertical distribution of Gymnamoebae (Rhizopoda, Lobosea) in the top layer of brackish-water sediments. Protist 155: 437–436

Smith H. G. (1982) The terrestrial protozoan fauna of South Georgia. Polar Biol1: 173–179

Smith H. G. (1996) Diversity of Antarctic terrestrial protozoa. Biodivers. Conserv. 5: 1379–1394

Solgi R., Niyyati M., Haghighi A., Nazemalhosseini Mojarad E. (2012) Occurrence of thermotolerant Hartmannella vermiformis and Naegleria spp. in hot spring of Ardebil Province, Northwest Iran. Iranian J. Parasitol6: 47–52

Stephenson S. L., Kalyanasundaram I., Lakhanpal T. N. (1993) A comparative biogeographical study of myxomycetes in the Mid-Appalachians of Eastern North America and two regions of India. J. Biogeogr20: 645–657

Timonen S., Christensen S., Flemming E. (2004) Distribution of protozoa in scots pine mycorrhizospheres. Soil Biol. Biochem36: 1087–1093

Tong S., Vørs N., Patterson D. J. (1997) Heterotrophic flagellates, centrohelid heliozoa and filose amoebae from marine and freshwater sites in the Antarctic. Polar Biol18: 91–106

Tyml T., Kostka M., Ditrich O., Dykova I. (2016) Vermistella arctica n. sp. nominates the genus Vermistella as a candidate for taxon with bipolar distribution. J. Eukaryot. Microbiol63: 210–219

Vørs N. (1992) Heterotrophic amoebae, flagellates and Heliozoa from the Tvärminne Area, Gulf of Finland, in 1988–1990. Ophelia 36: 1–109

Walochnik J., Mulec J. (2009) Free-living amoebae in carbonate precipitating microhabitats of karst caves and a new vahlkampfiid amoeba, Allovahlkampfia spelaea gen. nov., sp. nov. Acta Protozool48: 25–33

Wilkinson D. M., Smith H. G. (2006) An initial account of the terrestrial protozoa of Ascension Island. Acta Protozool. 45: 407–413


Ecology: Aquatic environments


Ahmad T. (2009) A study of fresh water protozoans with special reference to their abundance and ecology. J. Appl. Nat. Sci1: 166–169

Anderson O. R. (1994) Fine structure of the marine amoeba Vexillifera telmathalassa collected from a coastal site near Barbados with a description of salinity tolerance, feeding behavior and prey. J. Eukaryot. Microbiol41: 124–128

Anderson O. R. (1997) Annual abundances, diversity and growth potential of gymnamoebae in a shallow freshwater pond. J. Eukaryot. Microbiol44: 393–398

Anderson O. R. (1977) Fine structure of a marine ameba associated with a blue-green alga in the Sargasso Sea. J. Protozool24: 370–376

Anderson O. R. (2005) Effects of aqueous extracts from leaves and leaf litter on the abundance and diversity of soil gymnamoebae in laboratory microcosm cultures. J. Eukaryot. Microbiol52: 391–395

Anderson O. R. (2007) A seasonal study of the carbon content of planktonic naked amoebae in the Hudson Estuary and in a productive freshwater pond with comparative data for ciliates. J. Eukaryot. Microbiol54: 388–391

Anderson O. R. (2011) Particle-associated planktonic naked amoebae in the Hudson Estuary: Size-fractionation related densities, cell sizes and estimated carbon content. Acta Protozool50: 15–22

Anderson O. R. (2013) Naked amoebae in biofilms collected from a temperate freshwater pond. J. Eukaryot. Microbiol60: 429–431

Anderson O. R. (2016) The role of heterotrophic microbial communities in estuarine C budgets and the biogeochemical C cycle with implications for global warming: Research opportunities and challenges. J. Eukaryot. Microbiol63: 394–409

Anderson O. R., Rogerson A. (1995) Annual abundances and growth potential of gymnamoebae in the Hudson Estuary with comparative data from the Firth of Clyde. Europ. J. Protistol31: 223–233

Arndt H. (1993) A critical review of the importance of rhizopods (naked and testate amoebae) and actinopods (heliozoa) in lake plankton. Mar. Microb. Food Webs 7: 3–29

Artolozaga I., Santamaría E., López A., Begoña A., Iriberri J. (1997) Succession of bacterivorous protists on laboratory-made marine snow. J. Plankton Res. 19: 1429–1440

Baldock B. M., Baker J. H., Sleigh M. A. (1983) Abundance and productivity of protozoa in chalk streams. Oikos 6: 238–246

Bischoff P. J., Wetmore S. (2009) Seasonal abundances of naked amoebae in biofilms on shells of zebra mussels (Dreissena polymorpha) with comparative data from rock scrapings. J. Eukaryot. Microbiol56: 397–399

Bischoff P. J., Horvath T. G. (2011) Abundances of naked amoebae and macroflagellates in central New York lakes: Possible effects by zebra mussels. Acta Protozool50: 23–31

Butler H. G., Rogerson A. (1995) Temporal and spatial abundance of naked amoebae (Gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Eukaryot. Microbiol42: 724–730

Butler H. G., Rogerson A. (1996) Growth potential, production efficiency and annual production of marine benthic naked amoebae (gymnamoebae) inhabiting sediments of the Clyde Sea area, Scotland. Aquat. Microb. Ecol10: 123–129

Butler H. G., Edworthy M. G., Ellis-Evans J. C. (2000) Temporal plankton dynamics in an oligotrophic maritime Antarctic lake. Freshwater Biol43: 215–230

Canter H. M. (1973) A new primitive protozoan devouring centric diatoms in the plankton. Zool. J. Linn. Soc52: 63–83

Canter H. M., Lund J. W. G. (1968) The importance of Protozoa in controlling the abundance of planktonic algae in lakes. Proc. Linn. Soc. Lond179: 203–219

Caron D. A. (1991) Evolving role of protozoa in aquatic nutrient cycles. In: Protozoa and their role in marine processes. (Eds. P. C. Reid, C. M. Turley, P. H. Burkill). Berlin: Springer-Verlag, pp. 386–415

Caron D. A., Davis P. G., Madin L. P., Sieburth J. McN. (1982) Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218: 795–797

Cowie P. R., Hannah F. (2006) Responses of four isolates of marine naked amoebae to reductions in salinity. J. Exptl. Mar. Biol. Ecol. 337: 196–204

Cowie P. R., Hannah F. (2007) Impact of laboratory-imposed physical disturbance on the abundance of four isolates of marine gymnamoebae. Mar. Biol151: 675–686

Davidson L. A., Davidson A. E. (2005) The range of protists in Mono Lake, a hypersaline soda lake in the eastern sierras. J. Eukaryot. Microbiol52: 11S

de Moraes J., Alfieri S. C. (2008) Growth, encystment and survival of Acanthamoeba castellanii grazing on different bacteria. FEMS Microbiol. Ecol66: 221–229

Dirren S., Salcher M. M., Blom J. F., Schweikert M., Posch T. (2014) Ménage-á-trois: The amoeba Nuclearia sp. from Lake Zurich with its ecto- and endosymbiotic bacteria. Protist 165: 745–758

Dyková I., Fiala I., Divoráková H., Peckova H. (2008) Living together: The marine amoeba Thecamoeba hilla Schaeffer, 1926 and its endosymbiont Labryinthula sp. Europ. J. Protistol44: 308–316

Fenchel T. (2010) The life history of Flabellula baltica Smirnov (Gymnamoebae, Rhizopoda): Adaptations to a spatially and temporally heterogeneous environment. Protist 161: 279–287

Finlay B. J., Clarke K. J., Cowling A. J., Hindle R. M., Rogerson A., Berninger U.-G. (1988) On the abundance and distribution of protozoa and their food in a productive freshwater pond. Europ. J. Protistol23: 205–217

Grell K. G. (1994) The feeding community of Synamoeba arenaria n. gen., n. sp. Arch. Protistenkd144: 143–146

Hauer G., Rogerson A. (2005) Remarkable salinity tolerance of seven species of naked amoebae (gymnamoebae). Hydrobiologia 549: 33–42

Holt A. R., Warren P. H., Gaston K. J. (2002) The importance of biotic interactions in abundance-occupancy relationships. J. Anim. Ecol71: 846–854

Huws S. A., McBain A. J., Gilbert P. (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J. Appl. Microbiol98: 238–244

Jeon K. W., Jeon M. S. (1976) Endosymbiosis in amoebae: Recently established endosymbionts have become required cytoplasmic components. J. Cell Physiol89: 337–344

Jeon K. W., Lorch J. L. (1967) Unusual intra-cellular bacterial infection in large, free-living amoebae. Exp. Cell Res48: 236–240

Johnson P. W., Sieburth J. McN. (1976) In situ morphology of nitrifying-like bacteria in aquaculture systems. Appl. Environ. Microbiol31: 423–432

Khwon W. J., Park J. S. (2017) Morphology and phylogenetic analyses of three novel Naegleria isolated from freshwaters on Jeju Island, Korea, during the winter period. J. Eukaryot. Microbiol. doi/10.1111/jeu.12434/epdf

Kiss Á. K., Ács É., Kiss K. T., Török J. K. (2009) Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Europ. J. Protistol45: 121–138

Kostomarova-Nikitina L. P. (1967) The effect of Amoeba verrucosa on Ascaris eggs. Med. Parazitol. (Mosk.) 36: 181–184

Kusch J. (1993) Behavioural and morphological changes in ciliates induced by the predator Amoeba proteusOecologia 96: 354–359

Lawler S. P., Morin P. J. (1993) Food web architecture and population dynamics in laboratory microcosms of protists. Am. Nat. 141: 675–686

Laybourn-Parry J., Jones K., Holdich J. P. (1987) Grazing by Mayorella sp. (Protozoa: Sarcodina) on cyanobacteria. Funct. Ecol1: 99–104

Lesen A. E., Juhl A. R., Anderson O. R. (2010) Heterotrophic microplankton in the lower Hudson River Estuary: Potential importance of naked, planktonic amebas for bacterivory and carbon flux. Aquat. Microb. Ecol. 61: 45–56

Lugo A., Alcocer J., Sanchez Ma. del R., Escobar E. (1998) Littoral protozoan assemblages from two Mexican hyposaline lakes. Hydrobiologia 381: 9–13

Ma A. T., Daniels E. F., Gulizia N., Brahamsha B. (2016) Isolation of diverse amoebal grazers of freshwater cyanobacteria for the development of model systems to study predator-prey interactions. Algal Res13: 85–93

Mayes D. F., Rogerson A., Marchant H. J., Laybourn-Parry J. (1998) Temporal abundance of naked bacterivore amoebae in coastal East Antarctica. Estuar. Coast. Shelf Sci46: 565–572

Mbugua M. W. (2008) Characterization of unusual Gymnamoebae isolated from the marine environment. Theses, Dissertations and Capstones. Paper 724, Marshall University, Huntington, 
W. VA., 126 pp.

Magnet A., Fenoy S., Galván A. L., Izquierdo F., Rueda C., Vadillo C. F., del Aguila C. (2013) A year long study of the presence of free living amoeba in Spain. Water Res47: 6966–6972

Moss A. G., Estes A. M., Muellner L. A., Morgan D. D. (2001) Protistan epibionts of the ctenophore Mnemiopsis mccradyi Mayer. Hydrobiologia 452: 285–304

Mrva M. (2006) Diversity of gymnamoebae (Rhizopoda, Gymnamoebia) in a rain-water pool. Biologia Bratislava 61: 627–629

Oshima N., Takeda F., Ishii K. (1986) Responses of freshwater amoebae to salinity changes. Comp. Biochem. Physiol85A: 395–399

Parry J. D. (2004) Protozoan grazing of freshwater biofilms. Adv. Appl. Microbiol54: 167–196

Peglar M. T., Nerad T. A., Anderson O. R., Gillevet P. M. (2004) Identification of amoebae implicated in the life cycle of Pfiesteria and Pfiesteria-like dinoflagellates. J. Eukaryot. Microbiol51: 542–552

Polne-Fuller M. (1987) A multinucleated marine amoeba which digests seaweeds. J. Protozool34: 159–165

Ramirez E., Robles E., Martinez B. (2010) Free-living amoebae isolated from water-hyacinth root (Eichhornia crassipes). Exp. Parasitol126: 42–44

Rogerson A., Hannah F., Gothe G. (1996) The grazing potential of some unusual marine benthic amoebae feeding on bacteria. Europ. J. Protistol32: 271–279

Rogerson A., Williams A. G., Wilson P. C. (1998) Utilization of macroalgal carbohydrates by the marine amoeba Trichosphaerium sieboldiJ. Mar. Biol. AssU. K78: 733–744

Rogerson A., Anderson O. R., Vogel C. (2003) Are planktonic naked amoebae predominately floc associated or free in the water column? J. Plankton Res25: 1359–1365

Sawyer T. K. (1980) Marine amoebae from clean and stressed bottom sediments of the Atlantic Ocean and Gulf of Mexico. J. Protozool27: 13–32

Sawyer T. K. (2011) The influence of seawater media on growth and encystment of Acanthanoeba polyphagaP. Helm. Soc. Wash37: 182–188

Salt G. W. (1968) The feeding of Amoeba proteus on Paramecium aureliaJ. Protozool15: 275–280

Schulz F., Tyml T., Pizzetti I., Dyková I., Fazi S., Kostka M., Horn M. (2015) Marine amoebae with cytoplasmic and perinuclear symbionts deeply branching in the GammaproteobacteriaSci. Rep5: 13381, DOI: 10.1038/srep13381

Smirnov A. V. (1999) An illustrated survey of gymnamoebae isolated from anaerobic sediments of the Niva Bay (the sound) (Rhizopoda, Lobosea). Ophelia 50: 113–148

Smirnov A. V. (2001a) Diversity of gymnamoebae (Rhizopoda) in artificial cyanobacterial mats after four years in the laboratory. Ophelia 54: 223–227

Smirnov A. V. (2001b) Vannella ebro n. sp. (Lobosea, Gymnamoebia), isolated from cyanobacterial mats in Spain. Europ. J. Protistol37: 147–153

Smirnov A. V., Bedjagina O. M., Goodkov A. V. (2011) Dermamoeba algensis n. sp. (Amoebozoa, Dermamoebidae) – An algivorous lobose amoeba with complex cell coat and unusual feeding mode. Europ. J. Protistol47: 67–78

Urrutia-Cordero P., Agha R., Cirés S., Lezcano M. Á., Sánchez-Conteras M., Waara K.-O., Utkilen H., Quesada A. (2013) Effects of harmful cyanobacteria on the freshwater pathogenic free-living amoeba Acanthamoeba castellaniiAquat. Toxicol130–131: 9–17

Van Wichelen J., Van Gremberghe I., Vanormelingen P., Debeer A.-E., Leporcq B., Menzel D., Codd G. A., Descy J.-P., Vyverman W. (2010) Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environ. Microbiol12: 2797–2813

Van Wichelen J., D’Hondt S., Claeys M., Vyverman W., Berney C., Bass D., Vanormelingen P. (2016) A hotspot of amoebae diversity: 8 new naked amoebae associated with the plankton bloom-forming cyanobacterium MicrocystisActa Protozool55: 61–87

Wang Z., Wu M. (2014) Complete genome sequence of the endosymbiont of Acanthamoeba strain UWC8, an amoeba endo­symbiont belonging to the “Candidatus Midichloriaceae” family in RickettsialesGenome Announc. 2:e00791-14. doi:10.1128/genomeA.00791-14

Wörner U., Zimmerman-Timm H., Kausch H. (2000) Succession of protists on estuarine aggregates. Microb. Ecol40: 209–222

Wright S. J. L., Redhead K., Maudsley H. (1981) Acanthamoeba castellanii, a predator of cyanobacteria. J. Gen. Microbiol. 125: 293–300

Xinyao L., Miao S., Yonghong L., Yin G., Zhongkai Z., Donghui W., Weizhong W., Chencai A. (2006) Feeding characteristics of an Amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: Food selection, ingestion and digestion progress. Microb. Ecol51: 315–325

Xu M., Cao H., Xie P., Deng D., Feng W., Xu J. (2005) The temporal and spatial distribution, composition and abundance of protozoa in Chaohu Lake China: Relationship with eutrophication. Europ. J. Protistol41: 183–192

Yagita K., Matias R. R., Yasuda T., Natividad F. F., Enriquez G. L., Endo T. (1995) Acanthamoeba sp. from Philippines: Electron microscopy studies on naturally occurring bacterial symbionts. Parasitol. Res81: 98–102

Yamamoto Y. (1981) Observation on the occurrence of microbial agents which cause lysis of blue-green algae in Lake Kasumigaura. Jap. J. Limnol42: 20–27

Zubkov M. V., Sleigh M. A. (1999) Growth of amoebae and flagellates on bacteria deposited on filters. Microb. Ecol. 37: 107–115


Ecology: Terrestrial environments


Amewowor D. H. A. K., Madelin M. F. (1991) Numbers of myxomycetes and associated microorganisms in the root zones of cabbage (Brassica oleracea) and broad bean (Vicia faba) in field plots. FEMS Microbiol. Ecol86: 69–82

Andersen K. S., Winding A. (2004) Non-target effects of bacterial biological control agents on soil Protozoa. Biol. Fertil. Soils 40: 230–236

Anderson O. R. (2002) Laboratory and field-based studies of abundances, small-scale patchiness, and diversity of gymnamoebae in soils of varying porosity and organic content: Evidence of microbiocoenoses. J. Eukaryot. Microbiol49: 17–23

Anderson O. R. (2004) The effects of release from cold stress on the community composition of terrestrial gymnamoebae: A laboratory-based ecological study simulating transition from winter to spring. Acta Protzool43: 21–28

Anderson O. R. (2008) The role of amoeboid protists and the microbial community in moss-rich terrestrial ecosystems: Biogeochemical implications for the carbon budget and carbon cycle, especially at higher latitudes. J. Eukaryot. Microbiol55: 145–150

Anderson O. R. (2010) An analysis of respiratory activity, Q10, and microbial community composition of soils from high and low tussock sites at Toolik, Alaska. J. Eukaryot. Microbiol57: 218–219

Anderson O. R. (2012) The fate of organic sources of carbon in moss-rich tundra soil microbial communities: A laboratory experimental study. J. Eukaryot. Microbiol59: 564–570

Anderson O. R. (2014) The role of soil microbial communities in soil carbon processes and the biogeochemical carbon cycle. In: Soil Carbon: Types, Management Practices and Environmental Benefits. (Ed. A. Margit). New York, Nova Publishers. pp. 1–50

Anderson O. R. (2016) Experimental evidence for non-encysted, freeze-resistant stages of terrestrial naked amoebae capable of resumed growth after freeze-thaw events. Acta Protozool55: 19–25

Anderson O. R., McGuire K. (2013) C-biomass of bacteria, fungi, and protozoan communities in Arctic tundra soil, including trophic relationships. Acta Protozool52: 217–227

Anderson O. R., Gorrell T., Bergen A., Kruzansky R., Levandowsky M. (2001) Naked amoebas and bacteria in an oil-impacted salt marsh community. Microb. Ecol42: 474–481

Anderson O. R., Griffin K. (2001) Abundances of protozoa in soil of laboratory-grown wheat plants cultivated under low and high atmospheric CO2 concentrations. Protistology 2: 76–84

Anderson O. R., Juhl A. R., Bock N. (2017) Effects of organic carbon enrichment on respiration rates, phosphatase activities, and abundance of heterotrophic bacteria and protists in organic-rich Arctic and mineral-rich temperate soil samples. Polar Biology, DOI 10.1007/s00300-017-2166-4

Anderson R. V., Elliott E. T., McClellan J. F., Coleman D. C., Cole C. V., Hunt H. W. (1977–1978) Trophic interactions in soils as they affect energy and nutrient dynamics. III. Biotic interactions of bacteria, amoebae, and nematodes. MicrobEcol4: 361–371

Anderson T. R., Patrick Z. A. (1978) Mycophagous amoeboid organisms from soil that perforate spores of Thielaviopsis basicola and Cochliobolus sativusPhytopathology 68: 1618–1626

Andriuzzi W. S., Ngo P.-T., Geisen S., Keith A. M., Dumack K., Bolger T., Bonkowski M., Brussaard L., Faber J. H., Chabbi A., Rumpel C., Schmidt O. (2016) Organic matter composition and the protist and nematode communities around anecic earthworm burrows. Biol. Fertil. Soils 52: 91–100

Bamforth S. S. (1988) Interactions between Protozoa and other organisms. Agr. EcosystEnviron24: 229–234

Band N. R. (1995) ELF communications system ecological monitoring program: Soil amoeba – final report. Technical Report D06214-1. IIT Research Institute, Chicago ILL., 97 pp.

Barrett R. A., Alexander M. (1977) Resistance of cysts of amoebae to microbial decomposition. Appl. Environ. Microbiol. 33: 670–674

Bischoff P. J. (2002) An analysis of the abundance, diversity and patchiness of terrestrial gymnamoebae in relation to soil depth and precipitation events following a drought in southeastern U.S.A. Acta Protozool41: 183–189

Bischoff P. J., Connington K. (2016) Winter abundances of naked amoebae in the soil system of the invasive species Japanese knotweed (Fallopia japonica) with comparative data from adjacent sites. Acta Protozool55: 155–160

Bonkowski M. (2004) Protozoa and plant growth: The microbial loop in soil revisited. New Phytol162: 617–631

Bonkowski M., Schaefer M. (1997) Interactions between earthworms and soil protozoa: A trophic component in the soil food web. Soil Biol. Biochem29: 499–502

Bryant R. J., Woods L. E., Coleman D. C., Fairbanks B. C., McClellan J. F., Cole C. V. (1982) Interactions of bacterial and amoebal populations in soil microcosms with fluctuating moisture content. Appl. Environ. Microbiol43: 747–752

Cervero-Arago S., Rodíguez-Martinez S., Canals O., Salvadó H., Araujo R. M. (2013) Effect of thermal treatment on free-living amoeba inactivation. J. Appl. Microbiol116: 728–736

Chakraborty S., Theodorou C., Bowen G. D. (1985) The reduction of root colonization by mycorrhizal fungi by mycophagous amoebae. Can. J. Microbiol31: 295–297

Clarholm M. (1981) Protozoan grazing of bacteria on soil-impact and importance. Microb. Ecol7: 343–350

Coleman D. C., Cole C. V., Anderson R. V., Blaha M., Campion M. K., Clarholm M., Elliott E. T., Hunt H. W., Shaefer B., Sinclair J. (1977) An analysis of rhizosphere-saprophage interactions in terrestrial ecosystems. Ecol. Bull. (Stockholm) 25: 299–309

Cortés-Pérez S., Rodríguez-Zaragoza S., Mendoza-López Ma. R. (2014) Trophic structure of amoeba communities near roots of Medicago sativa after contamination with Fuel Oil No. 6. Microb. Ecol67: 430–442

Danso S. K. A., Keya S. O., Alexander M. (1975) Protozoa and the decline of Rhizobium populations added to soil. Can. J. Microbiol21: 884–895

Darby B. (2008) Influence of altered temperature and precipitation on desert microfauna and their role in mediating soil nutrient availability. Graduate College Dissertations and Theses, Paper 64, University of Vermont, 182 pp.

Darbyshire J. F. (2005) The use of biofilms for observing protozoan movement and feeding. FEMS Microbiol. Lett244: 329–333

Darbyshire J. F., Greaves M. P. (1967) Protozoa and bacteria in the rhizosphere of Sinapis alba L., Trifolium repens L., and Lolium perenne L. Can. J. Microbiol13: 1057–1068

Darbyshire J. F., Davidson M. S., Scott N. M., Shipton P. J. (1977) Some microbial and chemical changes in soil near the roots of spring barley, Hordium vulgare L. infected with take-all-disease. Ecol. Bull25: 374–380

Denet E., Coupat-Goutaland B., Nazaret S., Pélandakis M., Favre-Bonté S. (2017) Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitol. Res116: 3151–3162

Dreschler C. (1969) A Tulsanella parasitic on Amoeba terricolaAmer. J. Bot56: 1217–1220

Dupont A. Ö. C., Girffiths R. I., Bell T., Bass D. (2016) Differences in soil micro-eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs. Environ. Microbiol18: 2010–2024

Ekelund F., Olsson S., Johansen A. (2003) Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations. Soil Biol. Biochem35: 1507–1516

Ekelund F., Saj S., Vestergård M., Bertaux J., Mikola J. (2009) The “soil microbial loop” is not always needed to explain protozoan stimulation of plants. Soil Biol. Biochem41: 2336–2342

Elliott E. T., Cole C. V., Coleman D. C., Anderson R. V., Hunt H. W., McClellan J. F. (1979) Amoebal growth in soil microcosms: A model system of C, N, and P trophic dynamics. Intern. J. Environmental Studies 13: 169–174

Elliott E. T., Anderson R. V., Coleman D. C., Cole C. V. (1980) Habitable pore space and microbial trophic interactions. Oikos 35: 327–335

Finlay B. J., Black H. I. J., Brown S., Clarke K. J., Esteban G. F., Hindle R. M., Olmo J. L., Rollett A., Vickerman K. (2000) Estimating the growth potential of the soil protozoan community. Protist 151: 69–80

Gabilondo R., Fernández-Montiel I., Garcia-Barón I., Bécares E. (2015) The effects of experimental increases in underground carbon dioxide on edaphic protozoan communities. Int. J. Greenh. Gas Con41: 11–19

Georgieva S., Christensen S., Petersen H., Gjelstrup P., Thorup-Kristensen K. (2005) Early decomposer assemblages of soil organisms in litterbags with vetch and rye roots. Soil Biol. Biochem37: 1145–1155

Geisen S., Bandow C., Römbke J., Bonkowski M. (2014) Soil water availability strongly alters the community composition of soil protists. Pedobiologia 57: 205–213

Geisen S., Koller R., Hünninghaus M., Dumack K., Urich T., Bonkowski M. (2016) The soil food web revisited: Diverse and widespread mycophagous soil protists. Soil Biol. Biochem94: 10–18

Gould W. D., Coleman D. C., Rubink A. J. (1979) Effect of bacteria and amoebae on rhizosphere phosphatase activity. Appl. Environ. Microbiol37: 943–946

Greub G., La Scola B., Raoult D. (2003). Parachlamydia acanthamoeba is endosymbiotic or lytic for Acanthamoeba polyphaga depending on the incubation temperature. Ann. N. Y. Acad. Sci990: 628–634

Grün A.-L., Sheid P., Hauröder B., Emmerling C., Manz W. (2017) Assessment of the effect of silver nanoparticles on the relevant soil protozoan genus AcanthamoebaJ. Plant Nutr. Soil Sci180: 602–613

Horn M., Wagner M. (2004) Bacterial endosymbionts of free-living amoebae. J. Eukaryot. Microbiol51: 509–514

Jahnke J., Wehren T., Priefer U. B. (2007) In vitro studies of the impact of the naked soil amoeba Thecamoeba similis Greef, feeding on phototrophic soil biofilms. Europ. J. Soil Biol43: 14–22

Jousset A. (2012) Ecological and evolutive implications of bacterial defences against predators. Environ. Microbiol14: 1830–1843

Koller R. (2008) Amoebae in the rhizosphere and their interactions with arbuscular mycorrhizal fungi: effects on assimilate partitioning and nitrogen availability for plants. Doctor of Sciences Thesis, Technische Universität, Darmstadt, 116 pp.

Koller R., Scheu S., Bonkowski M., Robin C. (2013) Protozoa stimulate N uptake and growth of arbuscular mycorrhizal plants. Soil Biol. Biochem65: 204–210

Krome K., Rosenberg K., Bonkowski M., Scheu S. (2009) Grazing of protozoa on rhizosphere bacteria alters growth and reproduction of Arabidopsis thalianaSoil Biol. Biochem41: 1866–1873

Laird D. D. (1966) The pitcher plant, Sarracenia purpurea L., as an ecosystem. M. S. Thesis, The University of British Columbia, Vancouver, CA, 82 pp.

Lin B., Zhao X., Zheng Y., Qi S., Liu X. (2017) Effect of grazing intensity on protozoan community, microbial biomass, and enzyme activity in an alpine meadow on the Tibetan plateau. J. Soil. Sed12: 2752–2762

Liao Q. Y., Li J., Zhang J. H., Li M., Lu Y., Xu R. I. (2009) An ecological analysis of soil sarcodina at Dongzhaigang mangrove in Hainan Island, China. Europ. J. Soil Biol. 45: 214–219

Michel R., Walochnik J., Scheid P. (2014) Article for the “Free-living amoebae Special Issue”: Isolation and characterisation of various amoebophagous fungi and evaluation of their prey spectrum. Exp. Parasitol145: S131–S136

Monroy F., Aira M., Dominguez J. (2008) Changes in the density of nematodes, protozoa and total coliforms after transit through the gut of four epigeic earthworms (Oligochaeta). Appl. Soil Ecol39: 127–132

Mrva M. (2005) Diversity of active gymnamoebae (Rhizopoda, Gymnamoebia) in mosses of the Malé Karpaty Mts (Slovakia). Ekológia (Bratislava) 24: 51–58

Mulec J., Dietersdorfer E., Üstüntürk-Onan M., Walochnik J. (2016) Acanthamoeba and other free-living amoebae in bat guano, an extreme habitat. Parasitol. Res115: 1375–1383

Murase J., Frenzel P. (2008) Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiol. Ecol65: 408–414

Neidig N., Jousset A., Nunes F., Bonkowski M., Rüdiger J. P., Scheu S. (2010) Interference between bacterial feeding nematodes and amoebae relies on innate and inducible mutual toxicity. Funct. Ecol24: 1133–1138

Okafor N. (1966) Ecology of micro-organisms on chitin buried in soil. J. Gen. Microbiol44: 311–327

Old K. M., Darbyshire J. F. (1978) Soil fungi as food for giant amoebae. Soil Biol. Biochem10: 93–100

Orosz E., Farkas A., Ködöböcz L., Becságh P., Danka J., Kucsera I., Füleky G. (2013) Isolation of Acanthamoeba from the rhizosphere of maize and lucerne plants. Acta Microbiol. Imm. H60: 2939

Parker L. W., Freckman D. W., Steinberger Y., Driggers L., Whitford W. G. (1984a) Effects of simulated rainfall and litter quantities on desert soil biota: soil respiration, microflora, and Protozoa. Pedobiologia 27: 185–195

Parker L. W., Santos P. F., Phillips J., Whitford W. G. (1984b) Carbon and nitrogen dynamics during the decomposition of litter and roots of a Chihuahuan Desert annual. Lepidium lastocarpum. Ecol. Monogr. 54: 339–360

Persson T., Bååth E., Clarholm M., Lundkvist H., Söderström B. E., Sohlenius B. (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a scots pine forest. Ecol. Bull32: 419–459

Qi S., Zheng H., Lin Q., Li G., Xi Z., Zhao X. (2011) Effects of livestock grazing intensity on soil biota in a semiarid steppe of Inner Mongolia. Plant Soil 340: 117–126

Rodriguez-Zaragoza S., Mayzlish E., Steinberger Y. (2005) Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microb. Ecol49: 134–141

Rodriguez-Zaragoza S., Whitford W. G., Steinberger Y. (2007) Effects of temporally persistent ant nests on soil protozoan communities and the abundance of morphological types of amoeba. Appl. Soil Ecol37: 81–87

Rogerson A. (1982) An estimate of the annual production and energy flow of the large naked amoebae population inhabiting a Sphagnum bog. Archiv f. Protistenk126: 145–149

Rønn R., Gavito M., Larsen J., Jakobsen I., Frederiksen H., Christensen S. (2002) Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol. Biochem34: 923–932

Schnürer J., Clarholm M., Rosswall T. (1985) Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol. Biochem17: 611–618

Seneviratna A. G. D. H., Waidyasekera P. L. D. (1995) Ecology and distribution of soil protozoa in the Bellanwila wetland. Vidyodaya J. Sci5: 79–87

Shatilovich A. V., Shmakova L. A., Mylnikov A. P., Gilichinsky D. A. (2009) Chapter 8: Ancient protozoa isolated from permafrost. In: Permafrost Soils, Soil Biology 16, (Ed. R. Margesin). Springer-Verlag, Berlin, pp. 97–115

Stapleton L. M., Crout N. M. J., Säwström C., Marshall W. A., Poulton P. R., Tye A. M., Laybourn-Parry J. (2005) Microbial carbon dynamics in nitrogen amended Arctic tundra soil: Measurement and model testing. Soil Biol. Boiochem37: 2088–2098

Stout J. D. (1984) The protozoan fauna of a seasonally inundated soil under grassland. Soil Biol. Biochem16: 121–125

Takenouchi Y., Iwasaki K., Murase J. (2016) Response of the protistan community of a rice field soil to different oxygen tensions. FEMS Micriobiol. Ecol92, doi: 10.1093/femsec/fiw104

Vargas R., Hattori T. (1990) The distribution of protozoa among soil aggregates. FEMS Microbiol. Ecol74: 73–78

Weekers P. H. H., Engelberts A. M. W., Vogels G. D. (1995) Bacteriolytic activities of the free-living soil amoebae, Acanthamoeba castellaniiAcanthamoeba polyphaga and Hartmannella vermiformisA. Van Leeuw68: 237–243

Weidner S., Latz E., Agaras B., Valverde C., Jousset A. (2017) Protozoa stimulate the plant beneficial activity of rhizospheric pseudomonads. Plant Soil 410: 509–515

Zahn G., Wagai R., Yonemura S. (2016) The effects of amoebal bacterivory on carbon and nitrogen dynamics depend on temperature and soil structure interactions. Soil Biol. Biochem94: 133–137

Zhang S.-H., Cao Z.-P., Cheng Y.-F., Zhang G. (2012) Change of soil protozoa community structure under different farming practices. J. Anim. Vet. Adv17: 3140–3147


Physiology: Cell, nutrition, and symbioses


Adam K. M. G., Blewett D. A. (1967) Carbohydrate utilization by the soil amoeba Hartmannella castellaniiJ. Protozool14: 277–282

Ahmad M., Couillard P. (1974) The contractile vacuole in Amoeba proteus: Temperature effects. J. Protozool21: 330–336

Ahn T. I., Jeon K. W. (1979) Growth and electron microscopic studies on an experimentally established bacterial endosymbiosis in amoebae. J. Cell Physiol98: 49–58

Anderson O. R. (2006) A method for estimating cell volume of amoebae based on measurements of cell length of motile forms: Physiological and ecological applications. J. Eukaryot. Microbiol53: 185–187

Anderson O. R., McGuire K. (2013) C-biomass of bacteria, fungi, and protozoan communities in Arctic tundra soil, including trophic relationships. Acta Protozool52: 217–227

Avery S. V., Harwood J. L., Lloyd D. (1995) Quantification and characterization of phagocytosis in the soil amoeba Acanthamoeba castellanii by flow cytometry. Appl. Environ. Microbiol61: 1124–1132

Baldock B. M., Rogerson A., Berger J. (1982) Further studies on respiratory rates of freshwater amoebae (Rhizopoda, Gymnamoebia). Microb. Ecol8: 55–60

Barberá M. J., Ruiz-trillo I., Tufts J. Y. A., Bery A., Silberman J. D., Roger A. J. (2010) Sawyeria marylandensis (Heterolobosea) has hydrogenosome with novel metabolic properties. Eukaryot. Cell 9: 1913–1924

Bunt J. S. (1970) Preliminary observations on the growth of a naked marine ameba. Bull. Mar. Sci20: 315–330

Butler H., Rogerson A. (1997) Consumption rates of six species of marine benthic naked amoebae (Gymnamoebia) from sediments in the Clyde Sea area. J. Mar. Biol. Ass. U.K. 77: 989–997

Cann J. P. (1986) The feeding behavior and structure of Nuclearia delicatula (Filosea: Aconchulinida). J. Protozool33: 392–396

Chang N.-K., Lim C.-S., Bae J.-H. (1991) The characterization and activity changes of phosphatases in Amoeba sp. to the light stimuli and its response pattern. Korean J. Ecol14: 101–111 (in Korean with English Abstract)

Chapman-Andresen C. (1971) Biology of the large amoebae. Ann. Rev25: 27–48

Chattergee S. (1989) Pinocytosis in heterospecific amoebae. Cell Biol. Int. Reps13: 271–274

Christiansen R. G., Marshall J. M. (1965) A study of phagocytosis in the ameba Chaos chaosJ. Cell Biol25: 443–457

Cometa I., Schatz S., Trzyna W., Rogerson A. (2011) Tolerance of naked amoebae to low oxygen levels with an emphasis on the genus AcanthamoebaActa Protozool50: 33–41

Crawford D. W., Rogerson A., Laybourn-Parry J. (1994) Respiration of the marine amoeba Trichosphaerium sieboldi determined by 14C labelling and Cartesian diver methods. Mar. Ecol. Prog. Ser. 112: 135–142

Delafont V., Samba-Louaka A., Bouchon D., Laurent M., Héchard Y. (2015) Shedding light on microbial dark matter: A TM6 bacterium as natural endosymbiont of a free-living amoeba. Env. Microbiol. Rep. 7: 970–978

Dolphin W. D. (1970) Photoinhibition of growth in Acanthamoeba castellanii cultures. J. Bacteriol103: 755–760

Drainville G., Gagnon A. (1973). Osmoregulation in Acanthamoeba castellanii – I. Variations of the concentrations of free intracellular amino acids and of the water content. Comp. Biochem. Physiol45A: 379–388

Geoffrion Y., Larochelle J. (1984) The free amino acid contribution to osmotic regulation in Acanthamoeba castellaniiCan. J. Zool62: 1954–1959

Goodall R. J., Thompson J. E. (1971) A scanning electron microscopic study of phagocytosis. Exptl. Cell Res. 64: 1–8

Gutiérrez G., Chistyakova L. V., Villalobo E., Kostygov A. Y., Frolov A. O. (2017) Identification of Pelomyxa palustris endosymbionts. Protist 168: 408–424

Halvey S., Finkelstein S. (1965) Lipid composition of soil amoebae. J. Protozool12: 250–252

Hansson S. E., Johansson G., Josefsson J.-O. (1968) Oxygen uptake during pinocytosis in Amoeba proteusActa Physiol. Scand73: 491–500

Heal O. W. (1967) Quantitative studies on soil amoebae. In: Progress in soil biology (Ed. O. Graff, J. E. Satchell), North Holland Publishing Corp., Amsterdam, pp. 120–125

Jeon K. W., Jeon M. S. (1976) Scanning electron microscope observations of Amoeba proteus during phagocytosis. J. Protozool23: 83–86

Josefsson J.-O. (1968) Induction and inhibition of pinocytosis in Amoeba proteusActa Physiol. Scand73: 481–490

Kühn S. F. (1996/97) Rhizamoeba schepfii sp. nov., a naked amoeba feeding on marine diatoms (North Sea, German Bight). Arch. Protistenkd147: 277–282

Landau J. V. (1965) High hydrostatic pressure effects on Amoeba proteus: Changes in shape, volume, and surface area. J. Cell Biol24: 332–336

Larochelle J., Gagnon A. (1978) Osmoregulation in Acanthamoeba castellanii – III. Relations between dry weight, water, and inorganic ions, and control of the ionic levels. Comp. Biochem. Physiol59A: 119–123

Leger M. M., Gawryluk R. M. R., Gray M. W., Roger A. J. (2013) Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS ONE 8(9): e69532. doi:10.1371/journal.pone.0069532

Lima P. C., Taylor R. S., Cook M. (2016) Involvement of contractile vacuoles in the osmoregulation process of the marine parasitic amoeba Neoparamoeba peruransJ. Fish Dis39: 629–633

Liu C.-H., Fong B. A., Alfano S. A., Rakhlin I., Wang W. B., Ni X. H., Yang Y. L.., Zhou F., Zuzolo R. C., Alfano R. R. (2011) Dynamics of hybrid amoeba proteus containing zoochlorellae studied using fluorescence spectroscopy. Proc. SPIE 7895, Optical Biopsy IX, 78950Y (17 February 2011), doi:10.1117/12.875293

Mayes D. F., Rogerson A., Marchant H., Laybourn-Parry J. (1997) Growth and consumption rates of bacterivorous Antarctic naked marine amoebae. Mar. Ecol. Prog. Ser160: 101–108

Michel R., Hauröder B., Müller K.-D. (2010) Saccamoeba limax (Hartmannellidae) isolated from Elodea sp. was colonized by two strains of endocytic bacteria and a bacteriophage. Endocyt. Cell Res20: 38–44

Müller M. (1969a) Peroxisomes of protozoa. Ann. N. Y. Acad. Sci168: 292–301

Müller M. (1969b) Lysosomal hydrolases in Acanthamoeba sp. J. Protozool16: 428–431

Müller M. (1985) Search for cell organelles in protozoa. J. Protozool32: 559–563

Nachmias V. T. (1986) A study by electron microscopy of the formation of new surface by Chaos ChaosExp. Cell Res43: 583–601

Old K. M., Chakraborty S., Giggs R. (1985) Fine structure of a new mycophagous amoeba and its feeding on Cochliobolus sativusSoil Biol. Biochem17: 645–655

Page F. C. (1977) The genus Thecamoeba (Protozoa, Gymnamoebia) Species distinctions, locomotive morphology, and protozoan prey. J. Nat. Hist11: 25–63

Pal R. A. (1972) The osmoregulatory system of the amoeba, Acanthamoeba castellaniiJ. Exp. Biol57: 55–76

Patsyuk M. (2013) Tolerance of naked amoebas (Protista) to the abiotic factors. Nat. Montenegr12: 319–323

Pickup Z. L., Pickup R., Parry J. D. (2007) A comparison of the growth and starvation responses of Acanthamoeba castellanii and Hartmannella veriformis in the presence of suspended and attached Escherichia coli K12. FEMS Microbiol. Ecol59: 556–563

Pigon A. (1970) Hartmannella: Growth controlling substances in culture medium. Protoplasma 70: 405–414

Prescott L. M., Lottman J. K., Vance P. L. (1974) Carbohydrate metabolism in Acanthamoeba castellanii – II. Carbon dioxide fixation reactions. Comp. Biochem. Physiol48B: 205–209

Prusch R. D., Hannafin J. A. (1979) Sucrose uptake by pinocytosis in Amoeba proteus and the influence of external calcium. J. Gen. Physiol74: 523–535

Riddick D. H. (1968) Contractile vacuole in the amoeba, Pelomyxa carolinensisAm. J Physiol215: 736–740

Rogerson A. (1979) Energy content of Amoeba proteus and Tetrahymena pyriformis (Protozoa). Can. J. Zool. 57: 2463–2465

Rogerson A. (1981) The ecological energetics of Amoeba proteus (Protozoa). Hydrobiologia 85: 117–128

Rogerson A., Butler H. G., Thompson J. C. (1994) Estimation of amoeba cell volume from nuclear diameter and its application to studies in protozoan ecology. Hydrobiologia 284: 229–234

Ryter A., Bowers B. (1976) Localization of acid phosphatase in Acanthamoeba castellanii with light and electron microscopy during growth and after phagocytosis. J. Ultrastruct. Res57: 309–321

Schuster F. L. (1979) Small amebas and ameboflagellates. In: Biochemistry and Physiology of Protozoa (2nd Ed., Vol. 1), (Ed. M. Levandowsky, H. M. Hutner), Academic Press, New York, pp. 216–287

Schulz F., Lagkouvardos I., Wascher F., Aistleitner K., Kostanjsek R., Horn M. (2014) Life in an unusual intracellular niche: A bacterial symbiont infecting the nucleus of amoebae. ISME J8: 1634–1644

Sopina V. A. (2003) Activity and thermostability of acid phosphatase in Amoebae Amoeba proteus cultured at different temperatures. J. Evol. Biochem. Phys39: 405–415

Tomlinson G. (1967) The glyoxylate pathway in Acanthamoeba sp. J. Protozool14: 114–116

Weik R. R., John D. T. (1977) Cell size, macromolecular composition, and O2 consumption during agitated cultivation of Naegleria gruberiJ. Protozool24: 196–200

Whatley J. M. (1976) Bacteria and nuclei in Pelomyxa palustris: Comments on the theory of serial endosymbiosis. New Phytol76: 111–120

Wigg D., Bovee E. C., Jahn T. L. (1967) Evacuation mechanism of the water expulsion vesicle (“contractile vacuole”) of Amoeba proteusJ. Protozool14: 104–108

Wilkins J. A., Thompson J. E. (1974) The effects of cell population density on the plasma membrane of Acanthamoeba castellaniiExp. Cell Res89: 143–153


Physiology: Locomotion, reproduction, life cycle and evolution


Allen R. D. (1972) Pattern of birefringence in the giant amoeba, Chaos carolinensisExp. Cell Res72: 34–45

Anderson O. R. (2010) Field and laboratory studies of encysted and trophic stages of naked amoebae: Including a perspective on population life cycle dynamics. Acta Protozool49: 1–8

Akins R. A., Gozs S. M., Byers T. J. (1985) Factors regulating the encystment enhancing activity (EEA) of Acanthamoeba castellaniiJ. Gen. Microbiol131: 2609–2617

Baldock B. M, Berger J. (1984) The effects of low temperatures on the growth of four fresh-water amoebae (Protozoa: Gymnamoebia). Trans. Am. Microsc. Soc103: 233–239

Baldock B. M., Baker J. H., Sleigh M. A. (1980) Laboratory growth rates of six species of freshwater Gymnamoebia. Oecologia 47: 156–159

Band R. N., Mohrlok S. (1969) The respiratory metabolism of Acanthamoeba rhysodes during encystation. J. Gen. Microbiol59: 351–358

Berney C., Geisen S., Van Wichelen J., Nitsche F., Vanormelingen P., Bonkowski M., Bass D. (2015) Expansion of the ‘Reticulosphere’: Diversity of novel branching and network-forming amoebae helps to define Variosea. Protist 166: 271–295.

Bowen S. M., Griffiths A. J., Lloyd D. (1969) Enzyme distribution in an amoeba during encystment. Biochem. J115: 41P–42P

Brewer J. E., Bell L. G. E. (1969) Pseudopodium induction by the action of quaternary ammonium ions on Amoeba proteusJ. Cell Sci4: 17–24

Cavalier-Smith T., Chao E. E., Lewis R. (2016) 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Mol. Phylogenet. Evol99: 275–296

Chambers J. A., Thompson J. E. (1972) A scanning electron microscopic study of the excystment process of Acanthamoeba castellaniiExp. Cell Res73: 415–421

Datta T. (1979) Effect of organic and inorganic compounds and carbon dioxide in the excystment of soil amoebae. Archiv f. Protistenk121: 155–161

Dembo M. (1989) Mechanics and control of the cytoskeleton in Amoeba proteusBiophys. J55: 1053–1080

Feldherr C. M. (1968) Changes in the nuclear envelope of amoeba during mitosis. J. Cell Biol39: 49–54

Fouque E., Trouilhe M.-C., Thomas V., Hartemann P., Rodier M.-H., 
Héchard Y. (2012) Cellular, biochemical and molecular changes during encystment of free-living amoebae. 
Eukaryot. Cell 11: 382–387

Fouque E., Trouilhe M.-C., Thomas V., Hartemann P., Rodier M.-H., 
Héchard Y. (2014a) Encystment of 
Vermamoeba (Hartmannellavermiformis: Effects of environmental conditions and cell concentration. Exp. Parasitol145: 562–568

Fouque E., Yefimova M., Trouilhe M.-C., Quellard N., Fernandez B., Rodier M.-H., Thomas V., Humeau P., Héchard Y. (2014b) Morphological study of the encystment and excystment of Vermamoeba vermiformis revealed original traits. J. Eukaryot. Microbiol62: 327–337

Grebecki A. (1982) Supramolecular aspects of amoeboid movement. Acta Protozool. Proceedings of VI International Congress of Protozoology, part I, pp. 117–130

Griffiths A. J. (1969) Encystment in amoebae. Adv. Microbial Physiol. 4: 105–129

Griffiths A. J., Bowen S. M. (1969) Lysosomal activity and its control in encysting Hartmannella castellaniiJ. Gen. Microbiol59: 239–245

Griffiths A. J., Hughes D. E. (1969) The physiology of encystment of Hartmannella castellaniiJ. Protozool16: 93–99

Holberton D. (1969) Microtubules in the cytoplasm of an amoeba. Nature 222: 680–681

Jahn T. L., Votta J. J., Kirby G. S., Rinaldi R. A., Cameron I. L., Allen R. D., Zeh R., Condellis J., Francis D. W. (1972) Capillary suction test of the pressure gradient theory of amoeboid motion. Science 177: 636–638

Jeon K. W., Bell L. G. E. (1965) Chemotaxis in a large, free-living amoebae. Exp. Cell Res38: 536–555

Jones P. C. T. (1966) A contractile protein model for cell adhesion. Nature 212: 365–369

Kang S., Tice A. K., Spiegel F. W., Silberman J. D., Pánek T., Cepicka I., Kostka M., Kosakyan A., Alcântara D. M. C., Roger A. J., Shadwick L. L., Smirnov A., Kudryavtsev A., Lahr D. J. G., Brown M. W. (2017) Between a pod and a hard test: The deep evolution of amoebae. Mol. Biol. Evol. 34: 2258–2270

King C. A., Preston T. M., Miller R. H. (1983) Cell-substrate interactions in amoeboid locomotion – a matched reflexion interference and transmission electron microscopy study. Cell Biol. Int. Rep7: 641–649

Klopocka W., Stockem W. (1989) High temperature-induced changes in the organization of the microfilament system and cell membrane activity in Amoeba proteusEurop. J. Protistol24: 145–151

Lahr D. J. G., Parfrey L. W., Mitchell E. A. D., Katz L. A., Lara E. (2011) The chastity of amoebae: Re-evaluating evidence for sex in amoeboid organisms. Proc. R. Soc. B 278: 2081–2090

Lasman M. (1982) The fine structure of Acanthamoeba astronyxis, with special emphasis on encystment. J. Protozool29: 458–464

Lasman M., Shafran A. (1978) Induction of encystment in Acanthamoeba palestinensis. Factors influencing cyst formation. J. Protozool25: 489–491

Leitsch D., Köhsler M., Marchetti-Deschman M., Deutsch A., 
Günter A., Duchêne M., Walochnik J. (2010) Major role for cysteine proteases during the early phase of 
Acanthamoeba castellanii encystment. Eukaryot. Cell 9: 611–618

Lemgruber L., Lupetti P., De Souza W., Vommaro R. C., da Rocha-Azevedo B. (2010) The fine structure of Acanthamoeba polyphaga cyst wall. FEMS Microbiol. Lett305: 170–176

Lloyd D. (2014) Encystment in Acanthamoeba castellanii: A review. Expt. Parasitol145: S20–S27

Lorch I. J. (1969) The rate of attachment of amoebae to the substratum: A study of nuclear-cytoplasmic relationships. J. Cell Physiol73: 171–178

Maciver S. K. (2016) Asexual amoebae escape Muller’s ratchet through polypoidy. Trends Parasitol32: 855–862

Martin R. E. (1987) Adhesion, morphology, and locomotion of Paramoeba pemaquidensis Page (Amoebida, Paramoebidae): Effects of substrate charge density and external cations. J. Protozool34: 345–349

Martin S. M., Byers T. J. (1976) Acid hydrolase activity during growth and encystment in Acanthamoeba castellaniiJ. Protozool23: 608–613

McIntyre J., Jenkin C. R. (1969) Chemotaxis in the free-living amoeba Hartmannella rhysodesAust. J. Exp. Med. Sci47: 625–632

Moon E.-K., Hong Y., Chung D.-I., Kong H.-H. (2012) Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of AcanthamoebaMol. Biochem. Parasit185: 121–126

Nohmi M., Tawada K. (1974) The negatively charged protein extracted from Tetrahymena pyriformis as an attractant in Amoeba proteus chemotaxis. J. Cell Physiol84: 135–140

Ord M. J. (1969) Control of DNA synthesis in Amoeba proteusNature 221: 964–966

Park J. T., Jeong Y. E., Ahn T. I. (2002) Changes in profiles of major proteins in encysting Acanthamoeba castellaniiKorean J. Biol. Sci6: 341–347

Pasternak J. J., Thompson J. E., Schultz T. M. G., Zachariah K. (1970) A scanning electron microscopic study of the encystment of Acanthamoeba castellaniiExp. Cell Res60: 290–298

Pauls K. P., Thompson J. E. (1981) Regulation of fatty acid unsaturation in encysting Acanthamoeba cells. Curr. Microbiol5: 129–132

Pigon A. (1972) Inhibition of movement, attachment, and cytokinesis by autogenous substances in the Amoeba HartmannellaExp. Cell Res73: 170–176

Przelecka A., Sobota A. (1982) Growth phase dependent alterations in the surface coat of Acanthamoeba castellaniiActa Histochem71: 219–229

Rogerson A. (1980) Generation times and reproductive rates of Amoeba proteus (Leidy) as influenced by temperature and food concentration. Can. J. Zool58: 543–548

Ron A., Prescott D. M. (1969) The timing of DNA synthesis in Amoeba proteusExpt. Cell Res56: 430–434

Röpstorf P., Hülsmann N., Hausmann K. (1993) Karyological investigations on the vampyrellid filose amoeba Lateromyxa gallica Hülsmann 1993. Europ. J. Protistol29: 302–310

Schuster F. L. (1975) Ultrastructure of mitosis in the amoeboflagellate Naegleria gruberiTissue Cell 7: 1–12

Stevens A. R., Pachler P. F. (1973) RNA synthesis and turnover during density-inhibited growth and encystment of Acanthamoeba castellaniiJ. Cell Biol57: 525–537

Stratford M. P., Griffiths A. J. (1971) Excystment of the amoeba Hartmannella castellaniiJ. GenMicrobiol66: 247–249

Sykes D. E., Band R. N. (1985) Polyphenol oxidase produced during encystation of Acanthamoeba castellaniiJ. Protozool32: 512–517

Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. (1973) The contractile basis of amoeboid movement. J. Cell Biol59: 378–394

Tekle Y. I., Grant J., Anderson O. R., Nerad T. A., Cole J. C., Patterson D. J., Katz L. A. (2008) Phylogenetic placement of diverse amoebae inferred from multigene analyses and assessment of clade stability within ‘Amoebozoa’ upn removal of varying rate classes of SSU-rDNA. Mol. Phylogenet. Evol47: 339–352

Tekle Y. I., Anderson O. R., Lecky A. F. (2014) Evidence of parasexual activity in “Asexual amoebae” Cochliopodium spp. (Amobozoa): Extensive cellular and nuclear fusion. Protist 165: 676–687

Tekle Y. I., Williams J. R. (2017) Cytoskeletal architecture and its evolutionary significance in amoeboid eukaryotes and their mode of locomotion. Royal Soc. Open Sci3: 160283, DOI: 10.1098/rsos.160283

Tekle Y. I., Wood F. C., Katz L. A., Cerón-Romero M. A., Gorfu L. A. (2017) Amoebozoans are secretly but ancestrally sexual: Evidence for sex genes and potential novel crossover pathways in diverse groups of amoebae. Genome Biol. Evol9: 375–387

Tice A. K., Shadwick L. L., Fiore-Donno A. M., Geisen S., Kang S., Schuler G. A., Speigel F. W., Wilkinson K. A., Bonkowski M., Dumack K., Lahr D. J. G., Voelcker E., Clauss S., Zhang J., Brown M. W. (2016) Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Ameobozoa) and identification of a novel life cycle type within the group. Biology Direct 11: 69, doi.org/10.1186/s13062-016-0171-0

Turner N. A., Biagni G. A., Lloyd D. (1997) Anaerobiosis-induced differentiation of Acanthamoeba castellanii. FEMS Microbiol. Lett. 157: 149–153

Yang S., Villemez C. (1994) Cell surface control of differentiation in AcanthamoebaJ. Cell. Biochem56: 592–596

Weisman R. A., Spiegel R. S., McCauley J. G. (1970) Differentiation in Acanthamoeba: Glycogen levels and glycogen synthetase activity during encystment. Biochem. Biophys. Acta 201: 45–53

Czasopismo w darmowym dostępie.

Czasopismo ukazuje się w sposób ciągły on-line.
Pierwotną formą czasopisma jest wersja elektroniczna.