Nonparametric modeling of medical scheme data

Damian Kruszewski

Abstrakt

Modelowanie nieparametryczne danych medycznych

Celem niniejszego artykułu jest aplikacja uogólnionych modeli addytywnych do danych medycznych. Elastyczność nieparametrycznych rozwiązań przedstawiono na przykładzie modelowania zmiennych determinujących poziom nadciśnienia tętniczego krwi, takich jak atrybuty zdrowotne, fizjologiczne, demograficzne czy charakterystyki społeczno-ekonomiczne. W artykule zbadano nieliniowe zależności (oraz ich siłę) pomiędzy zmiennymi objaśniającymi a nadciśnieniem tętniczym krwi. Rozszerzona wersja modelu pozwala wyznaczyć nie tylko parametry skali i położenia, lecz również inne parametry charakterystyczne rozkładu, takie jak kurtoza i skośność

Słowa kluczowe: Uogólnione Modele Addytywne, wygładzanie, nadciśnienie tętnicze krwi, ciśnienie skurczone/rozkurczowe krwi
References

Chambers J.M., Hastie T.J., Statistical Models in S, Chapman & Hall, London 1992.

Cleveland W.S., Grosse E., Devlin S.J., Regression By Local Fitting, Journal of Econometrics, vol. 37, 1988, 87-114.

Cole T.J., Green P.J., Smoothing reference centile curves: the LMS method and penalized likelihood, Statistical Modeling, vol. 11, 1902, 1305-1319.

Eilers P.H., Marx B.D., Flexible smoothing with B-splines and penalties, Statistical Science, vol. 11, 1996, 89-121.

Feig D.I, Kang D.H., Nakagawa T., Mazzali M., Johnson R.J., Uric acid and hypertension, Curr Hypertens Rep., vol. 8(2), 2006, 111-115.

Friedman J.H., Stuetzle W., Projection Pursuit Regression, Journal of the American Statistical Association, vol. 76, 1981, 817-823.

Green P.J., Silverman B.W., Nonparametric Regression and Generalized Linear Models, Chapman & Hall, London 1994.

Gurven M., Blackwell A., Rodríguez A., Stieglitz J., Kaplan H., Does Blood Pressure Inevitably Rise With Age?, Longitudinal Evidence Among Forager-Horticulturalists, Hypertension, vol. 60(1), 2012, 25-33.

Hastie T.J., Tibshirani R.J., Generalized Additive Models, Chapman & Hall, London 1990.

Johnson N.L., Kotz S., Kemp A.W., Univariate Discrete Distributions, Wiley, New York 2005.

Lee J.A., Verleysen M., Nonlinear Dimensionality Reduction, Springer, New York 2007.

Łukasik S., Kulczycki P., Using Topology Preservation Measures for High-Dimensional Data Analysis in a Reduced Feature Space, Technical Transactions, vol. 1-AC/2012, Cracow University of Technology Press, 5-15.

Pinheiro J.C., Bates D.M., Mixed-Effects Models in S and S-PLUS, Springer-Verlag,  New York 2000.

Rigby R.A., Stasinopoulos D.M., Using the Box-Cox t distribution in GAMLSS to model skewness and kurtosis, Statistical Modeling, vol. 6, 2006, 209-229.

Royston P., Altman, D.G., Regression using fractional polynomials of continuous covariates: parsimonious parametric modeling, Appl. Statist., vol. 43, 1994, 429-467.

Stone C.J., Hansen M., Kooperberg C., Truong Y.K., Polynomial splines and their tensor products in extended linear modeling, Annals of Statistics, vol. 25, 1997, 1371-1470.

Shankar A., Li J., Association between serum gamma-glutamyltransferase level and prehypertension among US adults, Circ J., vol. 71(10), 2007, 1567-1572.

Tomera J.F., Harakal C., Multiple linear regression analysis of blood pressure, hypertrophy, calcium and cadmium in hypertensive and nonhypertensive states, Food and Chemical Toxicology, vol. 35(7), 1997, 713-718.

Wahba G., Bayesian Confidence Intervals for the Cross Validated Smoothing Spline, Journal of the Royal Statistical Society, vol. 45, 1983, 133150.

Webpage of National Health & Nutrition Examination Survey (source of the data set used for the analysis): http://www.cdc.gov/nchs/nhanes.htm.