Application of neural networks for social capital analysis

Julia Siderska

Abstrakt

The paper investigates the possibility of using soft computing for estimating the value of social capital. Our approach is applied to the case of Red Hat Inc. – the world’s leading provider of open source solutions. The objective of the research was to develop an artificial neural network for forecasting the value of social capital. These studies also allow us to identify variables significantly affecting the value of social capital. Computer simulations and assessments were done using software package STATISTICA Automated Neural Networks. The paper concludes with discussion and proposals for further research.

Słowa kluczowe: artificial neural network, soft computing, multilayer perceptron, social capital, independent variables, fundamental equation, global sensitivity analysis
References

Babock Ch., Red Hat: First $1 Billion Open Source Company, Information Week, 2012.

Corbet J., Kroah-Hartman G., McPherson A., Linux Kernel Development: How Fast it is Going, Who is Doing It, What They Are Doing and Who is Sponsoring It, The Linux Foundation, 2012, 7-12.

Lula P., Paliwoda-Pękosz G., Tadeusiewicz R., Metody sztucznej inteligencji i ich zastosowania w ekonomii i zarządzaniu, Akademicka Ekonomiczna w Krakowie, Kraków 2007, 79-86.

Munga N., Fogwill T., Williams Q., The adoption of open source software in business models: a Red Hat and IBM case study, ACM, New York 2009, 112-121.

Red Hat Corporation, Annual Reports 2005–2013, available at: http:/investors.redhat.com/annuals.cfm (accessed: October 2013).

Red Hat Corporation, available at: http:/investors.redhat.com (accessed: October 2013).

Red Hat Corporation, available at: http:/www.redhat.com (accessed: October 2013).

Rutkowska D., Piliński M., Rutkowski L., Sztuczne sieci neuronowe, algorytmy genetyczne i systemy rozmyte, Wydawnictwo Naukowe PWN, Warszawa 1997, 34.

Reuter U., Liebscher M., Global sensitivity in a view of nonlinear structural behavior, LS-DYNA Anwenderforum, Bamberg 2008, 1-2.

Sibi P., Allwyn-Jones A., Siddarth P., Analysis of different activation function using back propagation neural network, Journal of Theoretical and Applied Information Technology, Vol. 47, No. 3, 2013, 1264-1268.

Tadeusiewicz R., Sieci neuronowe, Akademicka Oficyna Wydawnicza, Warszawa 1993.

Walczak S., Methodological Triangulation Using Neural Networks for Business Research, Advances in Artificial Neural Systems Volume 2012, Article ID 517234, University of Colorado, Denver 2012.

Walukiewicz S., Kapitał społeczny, Systems Research Institute of the Polish Academy of Science, Warsaw 2012.

Walukiewicz S., Kapitał ludzki, System Research Institute of the Polish Academy of Science, Warsaw 2010.