Modeling integrated sustainable waste management systems by fuzzy cognitive maps and the system of systems concept

Adrienn Buruzs,

Miklós. F. Hatwágner,

László T. Kóczy

Abstrakt

This paper describes the problems relating to the complexity of modern waste management systems. We present a new approach to selecting a better waste management solution. For a large and complex system it is extremely difficult to describe the entire system by a precise mathematical model. Therefore, we propose the use of Fuzzy Cognitive Maps (FCM), its combination with the Bacterial Evolutionary Algorithm (BEA) and the system of systems approach to support the planning and decision making process of integrated systems.

Słowa kluczowe: sustainability, integrated waste management system (IWMS), fuzzy cognitive map (FCM), bacterial evolutionary algorithm (BEA), system of systems (SoS) approach
References

Demirbas A., Waste management, waste resource facilities and waste conversion processes, Energy Conservation and management, 52, 2011, 1280-1287.

Salhofer S., Wassermann G., Binner E., Strategic environmental assessment as an approach to assess waste management systems. Experiences from an Austrian case study, Environmental Modelling & Software, 22, 2007, 610-618.

van de Klundert A., Anschutz J., Integrated sustainable waste management: the selection of appropriate technologies and the design of sustainable systems is not (only) a technological issue, Paper prepared for the CEDARE/IETC Inter-regional Workshop on Technologies for Sustainable Waste Management, 13–15 July 1999 Alexandria.

Morrissey A.J., Browne J., Waste management models and their application to sustainable waste management, Waste Management, 24, 2004, 297-308

Wilson E.J., McDougall F.R., Willmore J., Euro-Trash: Searching Europe for a More Sustainable Approach to Waste management, Resources Conservation and Recycling, 31, 2001, 327-346.

Langa D.J., Binder C.R. et al., Material and Money Flows as a Means for Industry Analysis of Recycling Schemes. A Case Study of Regional Bio-Waste Management, Resources, Conservation and Recycling, 49, 2006, 159-190.

den Boer J., den Boer E., Jager J., LCA-IWM: A Decision Support Tool for Sustainability Assessment of Waste Management Systems, Waste Management, 27, 2007, 1032-1045.

Thorneloe S.A., Weitz K., Barlaz M., Ham R.K., Tools for Determining Sustainable Waste Management Through Application of Life-Cycle Assessment: Update on U.S. Research, Seventh International Waste Management and Landfill Symposium V, 1999, 629-636.

Kosko B., Fuzzy cognitive maps, Int. J. Man-Machine Studies, 24, 1986, 65-75.

Perusich K., System Diagnosis Using Fuzzy Cognitive Maps, Cognitive Maps, Karl Perusich (Ed.), InTech, 2010.

Buruzs A., Pozna R.C., Kóczy L.T., Developing Fuzzy Cognitive Maps for Modeling Regional Waste Management Systems, Civil-Comp Press, Proceedings of the Third International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering Computing, Y. Tsompanakis, (Ed.), Civil-Comp Press, Stirlingshire, Scotland 2013.

Buruzs A., Hatwágner M. F., Pozna R.C., Kóczy L.T., Advanced learning of fuzzy cognitive maps of waste management by bacterial algorithm, IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Joint. IEEE, 2013.

Hung M., Ma H., Yang W., A novel sustainable decision making model for municipal solid waste management, Waste Management, 27, 2007, 209-219.

Papageorgiou E., Kontogianni A., Using Fuzzy Cognitive Mapping in Environmental Decision Making and Management: A Methodological Primer and an Application, International Perspectives on Global Environmental Change, S. Young (Ed.), InTech, 2012.

Özesmi U., Özesmi S.L., Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach, Ecological Modelling, Vol. 176, Issues 1–2, 15, 2004, 43-64.

Stylos C.D., Georgopoulos V.C., Groumpos P.P., The use of Fuzzy cognitive maps in modeling systems, Proceedings of 5th IEEE Mediterranean Conference on Control and Systems, Paphos, Cyprus, July 21–23 1997.

Stylos C.D., Georgopoulos V.C., Groumpos P.P., The Use of Fuzzy Cognitive Maps in Modeling Systems, Proc. of 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997.

Balázs K. Kóczy L.T., Botzheim J., Comparative Investigation of Various Evolutionary and Memetic Algorithms, Computational Intelligence in Engineering, Studies in Computational Intelligence 313, I.J. Rudas, J. Fodor, J. Kacprzyk (eds.), Springer 2010, 129-140.

Balázs K., Botzheim J., Kóczy L.T., Comparison of Various Evolutionary and Memetic Algorithms, Proc. of the International Symposium on Integrated Uncertainty Management and Applications, IUM 2010, Ishikawa 2010, 431-442.

Dányádi Z., Balázs K., Kóczy L.T., A Comparative Study of Various Evolutionary Algorithms and Their Combinations for Optimizing Fuzzy Rule-based Inference Systems, Scientific Bulletin of ‘Politechnica’ University of Timisoara, Romania, Transactions on Automatic Control and Computer Science, Vol. 55, No. 69, 2010, 247-254.

Balázs K., Kóczy L.T., Constructing Dense, Sparse and Hierarchical Fuzzy Systems by Applying Evolutionary Optimization Techniques, Applied and Computational Mathematics, Vol. 11, No. 1, 2012, 81-101.

Balázs K., Horváth Z., Kóczy L.T., Different Chromosome Based Evolutionary Approaches for the Permutation Flow Shop Problem, Acta Polytechnica Hungarica, Vol. 2, No. 2, 2012, 115-138.

Nawa N.E., Furuhashi T., Fuzzy System Parameters Discovery by Bacterial Evolutionary Algorithm, IEEE Transactions on Fuzzy Systems, Vol. 7, No. 5, 1999, 608-616.

Nawa N.E., Furuhashi T., A Study on the Effect of Transfer of Genes for the Bacterial Evolutionary Algorithm, Second International Conference on Knowledge-Based Intelligent Electronic System, L.C. Jain, R.K. Jain (eds.), Adelaide 1998, 585-590.

Nawa N.E., Hashiyama T., Furuhashi T., Uchikawa Y., A Study on Fuzzy Rules Discovery Using Pseudo-Bacterial Genetic Algorithm with Adaptive Operator, Proc. of IEEE International Conference on Evolutionary Computation, ICEC’97, 1997.

Bäck T., Fogel D.B., Michalewicz Z., Handbook of Evolutionary Computation, IOP Publishing and Oxford University Press, 1997.

Goldberg D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company, Inc., 1989.

Nawa N.E., Furuhashi T., Fuzzy System Parameters Discovery by Bacterial Evolutionary Algorithm, IEEE Transactions on Fuzzy Systems, Vol. 7, No. 5, 1999, 608-616.

Pintér J.D., Global Optimization in Action, Kluwer Academic Publishers, Dordrecht 1996.

Botzheim J., Cabrita C., Kóczy L.T., Ruano A.E., Fuzzy Rule Extraction by Bacterial Memetic Algorithms, International J. of Intelligent Systems, Vol. 24, 2009, 312-339.

Gál L., Kóczy L.T., Advanced Bacterial Memetic Algorithms, Acta Technica Jaurinensis, Series Intelligentia Computatorica, Vol. 1, No. 3, 2008, 225-243.

Botzheim J., Cabrita C., Kóczy L.T., Ruano A.E., Fuzzy Rule Extraction by Bacterial Memetic Algorithm, IFSA, Beijing 2005, 1563-1568.

Gál L., Botzheim J., Kóczy L.T., Modified Bacterial Memetic Algorithm used for Fuzzy Rule Base Extraction, CSTST’08 Proc. of the 5th international conference on Soft computing as transdisciplinary science and technology, ACM, NY, USA, 2008, 425-431.

Hatwágner F.M., Horvath A., Parallel Gene Transfer Operations for the Bacterial Evolutionary Algorithm, Acta Technica Jaurinensis, Vol. 4, No. 1, 2011, 89-112.

Buruzs A., Pozna R.C., Kóczy L.T., Developing Fuzzy Cognitive Maps for Modelling Regional Waste Management Systems, Y. Tsompanakis, (ed.), Proc. of the Third International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Civil-Comp Press, Paper 19, Stirlingshire, UK, 2013.

Buruzs A., Hatwágner M.F., Pozna R.C., Kóczy L.T., Advanced Learning of Fuzzy Cognitive Maps of Waste Management by Bacterial Algorithm, IFSA World Congress and NAFIPS Annual Meeting, IEEE, 2013, 890-895.

Stach W., Kurgan L., Pedrycz W., Reformat M., Genetic Learning of Fuzzy Cognitive Maps, Fuzzy Sets and Systems, 153, 2005, 371-401.

Hatwágner F.M., Horvath A., Parallel Gene Transfer Operations for the Bacterial Evolutionary Algorithm, Acta Technica Jaurinensis, Vol. 4, No. 1, 2011, 89-112.

Hatwágner F.M., Horvath A., Maintaining Genetic Diversity in Bacterial Evolutionary Algorithm, Annales Univ. Sci. Budapest, Sec. Comp, Vol. 37, Budapest 2012, 175-194.

Jamshidi M. (ed.), Systems of System Engineering. Innovation for the 21th Century, John Wiley & Sons, Inc. Hoboken, New Jersey, 2009, 480.

Boardman J., Sauser B., System of Systems – the meaning of of, Proc. of the 2006 IEEE/ SMC International Conference on System of Systems Engineering, Los Angeles 2006.

Boardman J., Sauser B., From prescience to emergence: taking hold of systems of systems management, n.a.

Al-Maaded M., Madi N.K., Kahraman R., Hodzic A., Ozerkan N.G., An Overview of Solid Waste Management and Plastic Recycling in Qatar, J. Polym Environ, 20, 2012, 186-194.

Wilson E.J., McDougall F.R., Willmore J., Euro-Trash: Searching Europe for a More Sustainable Approach to Waste management, J. of Resources Conservation and Recycling, 31, 2001, 327-346.

Shmeleva S.E., Powell J.R., Ecological–economic Modelling for Strategic Regional Waste Management System, J. of Ecological Economics, 59, 2006, 115-130.

Hung, M.-L., Ma, H.-W., Yang W.-F., A Novel Sustainable Decision Making Model for Municipal Solid Waste Management, J. of Waste Management, Vol. 27, 2, 2007, 209-219.

Salhofer S., Wassermann G., Binner E., Strategic Environmental Assessment as an Approach to Assess Waste Management Systems. Experiences from an Austrian Case Study, J. of Environmental Modelling & Software, Vol. 22, 5, 2007, 610-618.

Carvalho J.P., On the Semantics and the Use of Fuzzy Cognitive Maps in Social Sciences, WCCI 2010 IEEE World Congress on Computational Intelligence, CCIB, Barcelona 2010.

Ketipi M.K., Koulouriotis D.E., Karakasis E.G., Papakostas G.A., Tourassis V.D., A Flexible Nonlinear Approach to Represent Cause–effect Relationships in FCMs, J. of Applied Soft Computing, 12, 2012, 3757-3770.

Kecman V., Learning and Soft Computing, Support Vector machines, Neural Networks and Fuzzy, Logic Models, The MIT Press, Cambridge 2001.

Jang J.R., ANFIS, Adaptive-network-based fuzzy inference system, IEEE Trans. Syst., Man, Cybern., 23, 1993, 665-685.

Frayman Y., Wang l.P., Data mining using dynamically constructed recurrent fuzzy  neural networks, Research and Development in Knowledge Discovery and Data Mining, Vol. 1394, 1998, 122-131.