Nonparametric estimation for soil pore size distribution

Małgorzata Charytanowicz

Abstrakt

The study is concerned with the nonparametric kernel estimation to determine the soil porosity and pore size distribution. The kernel density estimation, the kernel estimation of cumulative distribution function, and the kernel estimator of quantile are considered. After a short description of the method, practical aspects and applications in agricultural science are presented. The nonparametric kernel estimation does not require a priori assumptions relating to the choice of the density function shape. Moreover, its natural interpretation together with its suitable properties makes them an adequate tool among others in estimation methods.

Słowa kluczowe: nonparametric estimation, kernel estimators, cumulative distribution function, kernel estimator of quantile, pore size distribution, pore space, total porosity
References

Draper N.R., Smith H., Applied regression analysis, John Wiley and Sons, New York 1981.

Kincaid D., Cheney W., Numerical Analysis, Brooks/Cole, Pacific Grove, 2002.

Koronacki J., Mielniczuk J., Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT, Warszawa 2001.

Król A., Niewczas J., Charytanowicz M., Gonet S., Lichner L., Czachor H., Lamorski K., Water-stable and non-stable soil aggregates and their pore size distributions, 20th International Poster Day and Institute of Hydrology Open Day ‘Transport of water, chemicals and energy in the soil – plant – atmosphere system’, 2012, 870-871.

Kruszewski D., Nonparametric modeling of medical scheme data, Technical Transactions,1-AC/2013, 93-117.

Kulczycki P., Estymatory jądrowe w analizie systemowej, WNT, Warszawa 2005.

Kulczycki P., Charytanowicz M., Conditional Parameter Identification with Different Losses of Under- and Overestimation, Applied Mathematical Modelling, 37 (4), 2013, 2166-2177.

Kulczycki P., Dawidowicz A.L., Kernel Estimator of Quantile, Universitatis Jagiellonicae Acta Mathematica, 37, 2005, 101-112.

Lange K., Numerical analysis for statisticians. Statistics and Computing, Springer, New York 2000.

Motulsky H., Intuitive Biostatistics, Oxford University Press, New York 1995.

Peth S., Nellesen J., Fischer G., Horn R., Non-invasive 3D analysis of local soil deformation under mechanical and hydraulic stresses by μCT and digital image correlation, Soil and Tillage Research, 111 (1), 2010, 3-18.

Pires de Silva A., Imhoff S., Kay B., Plant response to mechanical resistance and air-filled porosity of soils under conventional and no-tillage system, Scientia Agricola, 61 (4), 2004, 451-456.

Sheather S.J., Marron J.S., Kernel quantile estimators, Journal of the American Statistical Association, 85, 1990, 410-416.

Siegel A.F., Statistics and data analysis: an introduction, Wiley and Sons, New York 1988.

Silverman B.W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, London 1986.

Stoer J., Bulirsch R., Wstęp do analizy numerycznej, PWN, Warszawa 1987.

Tadeusiewicz R., Korohoda P., Komputerowa analiza i przetwarzanie obrazów, Wydawnictwo Fundacji Postępu Telekomunikacji, Kraków 1997.

Wand M.P., Jones M.C., Kernel Smoothing, Chapman and Hall, London 1994.

Wojnar L., Majorek M., Komputerowa analiza obrazu, Computer Scanning System, Warszawa 1994.

Zdravkov B., Cermak J., Sefara M., Janku J., Pore classification in the characterization of porous materials: A perspective, Central European Journal of Chemistry, 5 (2), 2007, 385-395.