Biomechanical aspects of atherosclerosis

Jarosław Wasilewski,

Kryspin Mirota


Pathogenesis of atherosclerosis is a complex multifactorial process of vascular wall injury. It is widely accepted that the local hemodynamic factors, in particular, disturbed flow and low/ oscillatory shear stress leads to the plaque development. We present a consistent concept of atherosclerosis aetiology, taking into consideration the four main components contributing in the atheroma formation: geometric, hemodynamic, hemorheological, and mechanical risk factors. Exemplary illustrative flow simulation results for formulated concept have been presented. It assumes the pulsatile non-Newtonian fluid flow and uses realistic coronary artery geometry based on medical imaging and segmentation.

Słowa kluczowe: atherosclerosis pathogenesis, shear stress, computational fluid dynamics

Wa s i l e w s k i J., K i l j a ń s k i T., G ł o w a c k i J., M i s z a l s k i - J a m k a K., Znaczenie zaburzeń przepływu w utrzymaniu drożności pomostów wieńcowych, Kardiochirurgia i Torakochirurgia Polska, 2011, 8:117-120.

K o l o z s v a r i R., G a l a j d a Z., U n g v a r i T., S z a b o G., R a c z I., S z e r a f i n T., H e r z f e l d I., E d e s I., P e t e r f f y A., K o s z e g i Z., Various clinical scenarios leading to development of the string sign of the internal thoracic artery after coronary bypass surgery: the role of competitive flow, a case series, J Cardiothorac Surg, 2012, 7:12.

M a d a r i c J., M i s t r i k A., R i e c a n s k y I., V u l e v I., P a c a k J., Ve r h a m m e K., d e B r u y n e B., F r i d r i c h V., B a r t u n e k J.I., Left internal mammary artery bypass dysfunction after revascularization of moderately narrowed coronary lesions. Colour-duplex ultrasound versus angiography study, Eur J Echocardiogr, 2008, 9:273-277.

L i u B., T a n g D., Computer simulations of atherosclerotic plaque growth in coronary arteries,
Mol Cell Biomech, 2010, 7:193-202.

G i b s o n C.M., D i a z L., K a n d a r p a K., S a c k s F.M., P a s t e r n a k R.C., S a n d o r T., F e l d m a n C., S t o n e P.H., Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries, Arteriosclerosis and Thrombosis, 1993, 13:310-315.

S a w c h u k A.P., U n t h a n k J.L., D a l s i n g M.C., Drag reducing polymers may decrease atherosclerosis by increasing shear in areas normally exposed to low shear stress, J Vasc Surg, 1999, 30:761-764.

E r t e p i n a r H., S ü z e n B., O z o r a n A., O z o r a n Y., C e y l a n S., Y e g i n o g l u G., U r e m e k G., Effects of drag reducing polymer on atherosclerosis, Biorheology, 1999, 27:631-644.

Wa s i l e w s k i J., K i l j a ń s k i T., Biomechaniczna przyczyna miażdżycy, Wydawnictwo Politechniki Łódzkiej, Łódź 2011.

Wa s i l e w s k i J., K i l j a ń s k i T., G ł o w a c k i J., Geometryczny czynnik ryzyka i zaburzenia przepływu w procesie miażdżycowym, Kardiochirurgia i Torakochirurgia Polska, 2010, 7:325-330.

Wa s i l e w s k i J., M i s z a l s k i - J a m k a K., G ł o w a c k i J., Topografia zmian miażdżycowych w badaniu angio-TK tętnic wieńcowych, Kardiochirurgia i Torakochirurgia Polska, 2010, 7:458-461.

C a r o C.G., F i t z - G e r a l d J.M., S c h r o t e r R.C., Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis, Proc Ro. Soc, London B, 1971, 177:9-159.

G n a s s o A., C a r a l l o C., I r a c e C., S p a g n u o l o V., d e N o v a r a G., M a t t i o l i P.L., P u j i a A., Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects, Circulation, 1996, 94:3257-3262.

J i a n g Y., K o h a r a K., H i w a d a K., Low wall shear stress contributes to atherosclerosis of the carotid artery in hypertensive patients, Hypertens Res, 1999, 2:203-207.

Wa s i l e w s k i J., K i l j a ń s k i T., M i s z a l s k i - J a m k a K., Rola naprężeń ścinających i mechanotransdukcji w procesie miażdżycowym, Kardiologia Polska, 2011, 69:717-720.

G a r c í a - C a r d e ñ a G., C o m a n d e r J.I., B l a c k m a n B.R., A n d e r s o n K.R., G i m b r o n e M.A., Mechanosensitive endothelial gene expression profiles: scripts for the role of hemodynamics in atherogenesis?, Ann N Y Acad Sci, 2001, 947:1-6.

C h e n g C., d e C r o m R., v a n H a p e r e n R., H e l d e r m a n F., M o u s a v i G o u r a b i B., v a n D a m m e L.C., K i r s c h b a u m S.W., S l a g e r C.J., v a n d e r S t e e n A.F., K r a m s R., The role of shear stress in atherosclerosis: Action through gene expression and inflammation?, Cell Biochem Biophys, 2004;41:279-294

Wa s s e r m a n S.M., T o p p e r J.N., Adaptation of the endothelium to fluid flow: in vitro analyses of gene expression and in vivo implications, Vasc Med, 2004, 9, 35-45.

R e s n i c k N., Y a h a v H., S h a y - S a l i t A., S h u s h y M., S c h u b e r t S., Z i l b e r - m a n L.C., Wo f o v i t z E., Fluid shear stress and the vascular endothelium: for better and for worse, Prog Biophys Mol Biol, 2003, 81:177-199.

W o n D., Z h u S.N., C h e n M., T e i c h e r t A.M., F i s h J.E., M a t o u k C.C., B o n e r t M., O j h a M., M a r s d e n P.A., C y b u l s k y M.I., Relative reduction of endothelial nitri-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow, Am J Pathol, 2007, 171:1691-1704.

C h i e n S., Role of shear stress direction in endothelial mechanotransduction, Mol Cell Biomech, 2008, 5:1-8.

C h e n g C., T e m p e l D., v a n H a p e r e n R., v a n d e r B a a n A., G r o s v e l d F., D a e m e n M.J., K r a m s R., d e C r o m R., Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress, Circulation, 2006,113:2744-2745

M a l e k A.M, A l p e r S.L., I z u m o S., Hemodynamic shear stress and its role in atherosclerosis, JAMA, 1999, 282:2035-2042.

R i k h t e g a r F., K n i g h t J.A., O l g a c U., S a u r S.C., P o u l i k a k o s D., M a r s h a l l W. Jr, C a t t i n P.C., A l k a d h i H., K u r t c u o g l u V., Choosing the optimal wall shear parameter for the prediction of plaque location – A patient-specific computational study in human left coronary arteries, Atherosclerosis, 2012, 221:432-437.

F r a u e n f e l d e r T., B o u t s i a n i s E., S c h e r t l e r T., H u s m a n n L., L e s c h k a S., P o u l i k a k o s D., M a r i n c e k B., A l k a d h i H., In-vivo flow simulation in coronary arteries based on computed tomography datasets: feasibility and initial results, Eur Radiol, 2007, 17:1291-1300.

C r u s c o F., A n t o n i e l l a A., P a p a V., M e n z a n o R., D i L a z z a r o D., D i M a n i c i G., R a g n i T., G i o v a g n o n i A., Midterm follow-up of patients receiving radial artery as coronary artery bypass grafts using 16-detector-row CT coronary angiography, Radiol Med (Torino), 2007, 112:538-549.

K h o t U.N., F r i e d m a n D.T., P e t t e r s s o n G., S m e d i r a N.G., L i J., E l l i s S.G., Radial artery bypass grafts have an increased occurrence of angiographically severe stenosis and occlusion compared with left internal mammary arteries and saphenous vein grafts, Circulation, 2004, 109:2086-2091.

H a y w a r d P.A., B u x t o n B.F., Contemporary coronary graft patency: 5-year observational data from a randomized trial of conduits, Ann Thorac Surg, 2007, 84:795-799.

F u j i w a r a T., K a j i y a F., K a n a z a w a S., M a t s u o k a S., Wa d a Y., H i r a m a t s u O., K a g i y a m a M., O g a s a w a r a Y., T s u j i o k a K., K a t s u - m u r a T., Comparison of blood flow velocity waveforms in different coronary artery bypass grafts. Sequential saphenous vein grafts and internal mammary artery grafts, Circulation, 1988, 78:1210-1217.

M e j i a J., M o n g r a i n R., B e r t r a n d O.F., Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models, J Biomech Eng, 2011, 133:074501.

L i u B., T a n g D., Influence of non-Newtonian properties of blood on the wall shear stress in human atherosclerotic right coronary arteries, Mol Cell Biomech, 2011, 8:73-90.

Wa s i l e w s k i J., P o l o ń s k i L., Znaczenie fibrynogenu i właściwości reologicznych krwi w miażdżycy i chorobie wieńcowej, Choroby Serca i Naczyń, 2010, 7:62-71.

J a x T.W., P e t e r s A J., P l e h n G., S c h o e b e l F.C., Hemostatic risk factors in patients with coronary artery disease and type 2 diabetes – a two year follow-up of 243 patients, Cardiovasc Diabetol, 2009, 7,8:48.

C e c c h i E., L i o t t a A.A., G o r i A.M, Va l e n t e S., G i g l i o l i C., L a z z e r I.C., S o f i F., G e n s i n i G.F., A b b a t e R., M a n n i n i L., Relationship between blood viscosity and infarct size in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention, Int J Cardiol, 2009, 134:189-194.

J u n k e r R., H e i n r i c h J., U l b r i c h H., S c h u l t e H., S c h ö n f e l d R., K ö h l e r E., A s s m a n n G., Relationship between plasma viscosity and the severity of coronary heart disease, Arterioscler Thromb Vasc Biol, 1998, 18:870-875.

Wa s i l e w s k i J., T u r c z y ń s k i B., S ł o w i ń s k a L., K o w a l i k V., O s a d n i k T., P o l o ń s k i L., Haemorheological factors and myocardial reperfusion in patients with ST-elevation myocardial infarction undergoing primary coronary intervention, Kardiol Pol, 2007, 65:778-785.

Wa s i l e w s k i J., P o d o l e c k i T., T u r c z y ń s k i B., K o w a l i k V., G ł o w a c k i J., The relationship between plasma viscosity and the degree of coronary artery calcification in the multislice computed tomography, MEDIMOND-Monduzzi Editore International Proceedings Division, 2010.