Hybrid approach in learning from examples in construction process design

Aneta Kończak,

Jerzy Pasławski

Abstrakt

This paper presents options for implementing an advisory system to support production processes in the
construction sector. With case-based reasoning methods (implementation of learning from examples) and simulation, an advisory system can be built on the foundation of a knowledge base, being a systematic collection of information aimed at the advancement of construction processes on site. Based on the evaluation of studied process results acquired in specified conditions (using the abductive approach), options are proposed for new case design engineering. The paper presents an example of application of case-based reasoning in delivering ready-mixed concrete to a large construction site from two batching plants.

Słowa kluczowe: hybrid advisory system, flexibility, case-based reasoning, simulation, abductive approach
References

Alter S., A work system view of DSS in its fourth decade, Decision Support System, Vol. 38, 2004, 319-327.

Courtney J.F., Decision making and knowledge management in inquiring organizations: toward a new decision– making paradigm for DSS, Decision Support System, Vol. 31, 2001, 17-38.

Dunlop P., Smith S., Estimating key characteristics of the concrete delivery and placement process using linear regression analysis, Civil Engineering and Enviromental Systems 20(4), 2003, 273-29.

Gabbay, D.M., Woods J., Advice in Abductive Logic, Logic Journal of the IGPL 14(2), 2006, 189-219.

Gajzler M., The Idea of Knowledge Supplementation and Explanation Using Neural Networks to Support Decisions in Construction Engineering, Procedia Engineering, Vol. 57, 2013, 302-309.

Graham D., Smith S., Estimating the productivity of cyclic construction operations using case-based reasoning, Advanced Engineering Informatics 18(1), 2004, 17-28,

Furmaniak M., Tomczyk J., Symulacja procesów budowlanych na przykładzie dostaw betonu towarowego, Praca inżynierska, Poznań 2014.

Kolodner J.L., An introduction to case-based reasoning, Artificial Intelligence Review 6 (1), 1992, 3-34.

Kończak A., Pasławski J., Abductive and Deductive Approach in Learning from Examples Method for Technological Decisions Making. Procedia Engineering, Vol. 57/2013, 2013, 583-588.

Liao S.-H., Expert system methodologies and applications – a decade review from 1995 to 2004, Expert Systems with Applications, Vol. 28, 2005, 93-103.

Nurminem J.K., Karonen O., Hatonen K., What expert systems survive over 10 years– empirical evaluation of several engineering applications, Expert Systems with Applications, Vol. 24, 2003, 199-211.

Radosiński E., Systemy informatyczne w dynamicznej analizie decyzyjnej, Wydawnictwo Naukowe PWN, Warszawa–Wrocław 2001.

Rutkowska D., Piliński M., Rutkowski M., Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, Wydawnictwo Naukowe PWN, Warszawa–Łódź 1999.

Ryu H., Lee H., Park M., Construction planning method using case-based reasoning (CONPLA-CBR), Journal of Computing in Civil Engineering, 21 (6), 2007, 410-422.

Siwiec M., Zgrabczyńska A., Symulacja procesów budowlanych na przykładzie dostaw mieszanki betonowej, Praca magisterska, Poznań 2013.

Tokarski Z., Sobotka A., Czernigowska A., Scheduling Material Transportation for Highway Repaving Project, Procedia Engineering, Vol. 48, 2013, 2012, 847-856.

Zavadskas E.K., Kaplinski O., Kaklauskas A., Brzeziński J., Expert systems in construction industry, Trends, Potential & Applications, Technika, Vilnius 1995.

Zieliński J.S. (red.), Inteligentne systemy w zarządzaniu. Teoria i praktyka, Wydawnictwo Naukowe PWN, Warszawa 2000.