On some aspects of the set theory and topology in J. Puzyna’s monumental work

Stanisław Domoradzki,

Mykhailo Zarichnyi

Abstrakt

The article highlights certain aspects of the set theory and topology in Puzyna’s work Theory of analytic functions (1899, 1900). In particular, the following notions are considered: derivative of a set, cardinality, connectedness, accumulation point, surface, genus of surface.

Słowa kluczowe: set theory, point-set topology, surface topology, mathematics at the edge of XIX and XX centuries, history of complex analysis, University of Lvov, Józef Puzyna
References

M. Bečvářová, Czech Mathematicians and Their Role in the Development of National Mathematics in the Balkans, in M. Bečvářová, Ch. Binder (eds.), Mathematics in the Austrian-Hungarian Empire. Proceedings of a Symposium held in Budapest on August 1, 2009 during the XXIII ICHST, edition History of Mathematics, volume 41, Matfyzpress, Prague 2010 (second edition, Matfyzpress, Prague 2011), 9-31.

G. Cantor, Beitrage zur Begrundung der transfiniten Mengenlehre II (tr.: Contributions to the Founding of the Theory of Transfinite Numbers II), Mathematische Annalen, vol. 49, 1897, 207-246.

G. Cantor, Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, J. Reine Angew. Math., vol. 77, 1874, 258-262.

S. Domoradzki, The Growth of Mathematical Culture in the Lvov area in the Autonomy period (1870‒1920), Matfyzpress, Prague 2011.

S. Domoradzki, Teoria mnogości w dziele Józefa Puzyny Teorya funkcyj analitycznych, [in:] W. Więsław (ed.), Dzieje matematyki polskiej, Instytut Matematyczny Uniwersytetu Wrocławskiego, Wrocław 2012, 45-58.

R. Duda, Lwowska szkoła matematyczna, Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław 2007.

R. Duda, Selected Mathematical Achievements of Poles: a Historicial Perspective, The Contribution of Polish Science and Technology to World Heritage, Kraków‒Warszawa 2010, 57-76.

R. Duda, Die Lemberger Mathematikerschule, JB 112, Heft 1, 2010, 3-24.

C. Goldstein, J. Gray, J. Ritter (eds.), L’Europe mathématique: histoires, mythes, identités, Paris 1996.

G. Mittag-Leffler, Sur la représentation analytique des fonctions monogènes uniformes, Acta Mathematica, vol. IV, 1884, 1-79.

A.F. Möbius, Werke, Vol. 2, 1858.

G. Peano, Sur une courbe, qui remplit toute un aire plaine, Mathematische Annalen, vol. 36, 1890, 157-160.

A. Płoski, O dziele Józefa Puzyny „Teorya funkcyj analitycznych”, [in:] S. Fudali (ed.), Materiały z II Ogólnopolskiej Szkoły Historii Matematyki, Szczecin 1988, 237-243.

H Poincaré, Analysis Situs, 1895.

Y.G. Prytula, Remarks on the history of mathematics in Lviv up to the middle of the XXth centuary, Lviv mathematical School in the period 1915‒45 as seen today, Banach Center Publications, Institute of Mathematics Polish Academy of Sciences, vol. 87, Warszawa 2009, 17-26.

J. Puzyna, Teorya funkcyj analitycznych, vol. I, Lwów 1898.

J. Puzyna, Teorya funkcyj analitycznych, vol. II, Lwów, 1900.

S. Saks, A. Zygmund, Funkcje analityczne, Monografie Matematyczne X, Warszawa‒Lwów‒Wilno 1937.

G.I. Sinkievich, tr. Georg Cantor and Polish school of the set theory, Saint-Petersburg 2012.