Vibration Transmissibility Behaviour of Simple Biodynamic Models Used in Vehicle Seat Design

Niresh Behari,

Marcin Noga

Abstrakt

W artykule przedstawiono porównanie przenoszenia drgań oraz impedancji mechanicznej dla pięciu prostych modeli biodynamicznych używanych w procesie projektowania foteli dla pojazdów. Przedstawione modele są używane w obliczeniach w celu ograniczenia czasu badań eksperymentalnych i zbierania danych podczas procesu projektowania produktu. Badania wykazały, że porównywane modele o dwóch, trzech i czterech stopniach swobody dają bardzo dobre wyniki na wstępnym etapie projektowania siedzeń. Analiza wykazała, że dalsze prace są potrzebne do zbadania częstotliwości rezonansowych dla określonych cech budowy anatomicznej oraz różnych cech osobniczych dla populacji pasażerów. 

 

Five biodynamic models are investigated to approximate vertical seat vibration transmissibility and mechanical impedance in an effort to reduce experimental time and data collection when designing vehicle seats. The research has found that these biodynamic models of two, three and four degrees of freedom are ideally suited for initial seat design, since whole body vibrations can be easily depicted at approximately 5Hz. Further research is necessary to investigate the resonant frequencies for defined anatomical structures, passenger variability and the use of a backrest support.

Słowa kluczowe: modele biodynamiczne, siedzenia pojazdów, przenoszenie drgań, impedancja mechaniczna , biodynamic model, vehicle seat, vibration transmissibility, mechanical impe
References
[1] Behari N., Comparison of Dynamic Models of Humans Sitting on Seats, Masters Thesis, University of Stellenbosch, December 2005. 
[2] Bellmann M., Perception of Whole-Body Vibrations: From basic experiments to effects of seat and steering-wheel vibrations on the passengers comfort inside vehicles, Ph.D. Thesis, University of Oldenburg, 2002. 
[3] Cho Y., Yoon Y.S., Biomechanical model of human on seat with backrest for evaluating ride quality, International Journal of Industrial Ergonomics, Vol. 27(5), 2001, 331–345. [4] Griffin M.J., Handbook of Human Vibration, Academic Press, London 1990. 
[5] ISO 5982:2001(E), Mechanical vibration and shock-Range of idealised values to characterize seated body biodynamic response under vertical vibration, International Organisation for Standardisation. 
[6] Książek, M.A., New ways of Modelling of Human Vibration Discomfort, Internoise 99, Fort Lauderdale, 1999, 1–6. 
[7] Kubo M., Terauchi F., Hiroyuki A., Matsuoka Y., An investigation into a synthetic vibration model for humans: An investigation into a mechanical vibration human 
12 model constructed according to the relations between the physical, psychological and physiological reactions of humans exposed to vibration, International Journal of Industrial Ergonomics, Vol. 27(4), 2001, 219–232. 
[8] Patten W., Pang J., Validation of a Nonlinear Automotive Seat Cushion Vibration Model, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, Vol. 30(1), 1998, 55–68. 
[9] Rakheja S., Wu X., Boileau P.E., A body mass dependent mechanical impedance model for applications in vibration seat testing, Journal of Sound and Vibration, Vol. 253(1), 2002, 243–264. 
[10]  Rakheja S., Afework Y., Sankar S., An Analytical and Experimental Investigation of the Driver-Seat-Suspension System, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, Vol. 23(1), 1994, 501–524. 
[11] Rosen J., Arcan M., Modeling the Human Body/Seat System in a Vibration Environment, Journal of Biomechanical Engineering, Vol. 125(2), 2003, 223–231. 
[12] Smith S.D., Nonlinear Resonance Behaviour in the Human Exposed to Whole-Body Vibration, Shock and Vibration, Vol. 1(5), 1994, 439–450.