Badania spektroskopowe efektów podwójnej fluorescencji w wybranym związku z grupy 1,3,4-tiadiazoli w rozpuszczalnikach organicznych oraz roztworach wodnych

Arkadiusz Matwijczuk

Abstrakt
W niniejszym artykule przedstawiono wyniki badań emisji fluorescencji wybranych związków z grupy 1,3,4-tiadiazoli w rozpuszczalnikach organicznych oraz roztworach wodnych. W środowisku wodnym dla badanych związków zaobserwowano interesujący efekt podwójnej fluorescencji indukowany między innymi zmianami pH. W rozpuszczalnikach innych niż woda obserwowano efekt albo pojedynczej fluorescencji lub dwóch rozdzielonych pasm emisji fluorescencji oraz efektu podwójnej fluorescencji. Na podstawie prezentowanych wyników badań zaproponowano, że na obserwowane efekty fluorescencyjne wpływ mogą mieć zarówno zmiany konformacyjne jak również procesy związane z agregacją chromoforową.
Słowa kluczowe: efekt podwójnej fluorescencji, spektroskopia molekularna, agregacja chromoforowa, 1, 3, 4-tiadiazole, transfer ładunku (CT)
References
[1] Jain A.K., Sharma S., Vaidya A., Ravichandran V., Agrawal R.K., 1, 3, 4‐Thiadiazole and its Derivatives: A Review on Recent Progress in Biological Activities, Chemical Biology & Drug Design, 2013, 557–576.
 
[2] Juszczak M., Matysiak J., Brzana W., Niewiadomy A., Rzeski W., Evaluation of the antiproliferative activity of 2-(monohalogenophenylamino)-5-(2, 4-dihydroxyphenyl)-1, 3, 4-thiadiazoles, Arzneimittelforschung, 2008, 353–357.
 
[3] Juszczak M., Matysiak J., Szeliga M., Pożarowski P., Niewiadomy A., Albrecht J., Rzeski W., 2-Amino-1, 3, 4-thiadiazole derivative (FABT) inhibits the extracellular signal-regulated kinase pathway and induces cell cycle arrest in human non-small lung carcinoma cells, Bioorganic & medicinal chemistry letters, 2012, 5466–5469.
 
[4] Noolvi M.N., Patel H.M., Kamboj S., Cameotra S.S., Synthesis and antimicrobial evaluation of novel 1, 3, 4-thiadiazole derivatives of 2-(4-formyl-2-methoxyphenoxy) acetic acid, Arabian Journal of Chemistry, 2012.
 
[5] Supurana C.T., Complexes with biologically active ligands. Part 9 Metal complexes of 5-benzoylamino-and 5-(3-nitrobenzoyl-amino)-i, 3, 4-thiadiazole-2-sulfonamide as carbonic anhydrase inhibitors, 1997.
 
[6] Turan N., Topçu M.F., Ergin Z., Sandal S., Tuzcu M., Akpolat N., Yılmaz B., Sekerci M., Karatepe M., Pro-oxidant and antiproliferative effects of the 1, 3, 4-thiadiazole–based Schiff base and its metal complexes, Drug and Chemical Toxicology, 2011, 369–378.
 
[7] Chabner B.A., Roberts T.G., Chemotherapy and the war on cancer, Nature Reviews
Cancer, 2005, 65–72.
 
[8] Rajak H., Deshmukh R., Aggarwal N., Kashaw S., Kharya M.D., Mishra P., Synthesis of Novel 2, 5‐Disubstituted 1, 3, 4‐Thiadiazoles for Their Potential Anticonvulsant Activity: Pharmacophoric Model Studies, Archiv der Pharmazie, 2009, 453–461.
 
[9] Bhongade B.A., Talath S., Gadad R.A., Gadad A.K., Biological activities of imidazo [2, 1-b][1, 3, 4] thiadiazole derivatives: A review, Journal of Saudi Chemical Society, 2013.
 
[10] Li Y., Geng J., Liu Y., Yu S., Zhao G., Thiadiazole a Promising Structure in Medicinal Chemistry, ChemMedChem, 2013, 27–41.
 
[11] Matysiak J., Nasulewicz A., Pełczyńska M., Świtalska M., Jaroszewicz I., Opolski A., Synthesis and antiproliferative activity of some 5-substituted 2-(2, 4-dihydroxyphenyl)-1, 3, 4-thiadiazoles, European Journal of Medicinal Chemistry, 2006, 475–482.
 
[12] Carstensen J., Solid‐state chemistry of drugs. By Stephen R. Byrn, Academic Press, 111 Fifth Avenue, Pharmaceutical Sciences, New York 1984, 573–573.
 
[13] Cressier D., Prouillac C., Hernandez P., Amourette C., Diserbo M., Lion C., Rima G.,Synthesis, antioxidant properties and radioprotective effects of new benzothiazoles and thiadiazoles, Bioorganic & Medicinal Chemistry, 2009, 5275–5284.
 
[14] Gagoś M., Matwijczuk A., Kamiński D., Niewiadomy A., Kowalski R., Karwasz G.P., Spectroscopic studies of intramolecular proton transfer in 2-(4-fluorophenylamino)-5-(2, 4-dihydroxybenzeno)-1, 3, 4-thiadiazole, Journal of Fluorescence, 2011, 1–10.
 
[15] Matwijczuk A., Górecki A., Kamiński D., Myśliwa-Kurdziel B., Fiedor L., Niewiadomy A., Karwasz G.P., Gagoś M., Influence of Solvent Polarizability on the Keto-Enol Equilibrium in 4-[5-(naphthalen-1-ylmethyl)-1, 3, 4-thiadiazol-2-yl] benzene-1, 3-diol, Journal of Fluorescence, 2015, 1867–1874.
 
[16] Hoser A.A., Kamiński D.M., Matwijczuk A., Niewiadomy A., Gagoś M., Woźniak K., On polymorphism of 2-(4-fluorophenylamino)-5-(2, 4-dihydroxybenzeno)-1, 3, 4-thiadiazole (FABT) DMSO solvates, CrystEngComm, 2013, 1978–1988.
 
[17] Kamiński D.M., Hoser A.A., Gagoś M., Matwijczuk A., Arczewska M., Niewiadomy A., Woźniak K., Solvatomorphism of 2-(4-Fluorophenylamino)-5-(2, 4-dihydroxybenzeno)-1, 3, 4-thiadiazole Chloride, Crystal Growth & Design, 2010, 3480–3488.
 
[18] Kamiński D.M., Matwijczuk A., Pociecha D., Górecka E., Niewiadomy A., Dmowska M., Gagoś M., Effect of 2-(4-fluorophenylamino)-5-(2, 4-dihydroxyphenyl)-1, 3, 4-thiadiazole on the molecular organisation and structural properties of the DPPC lipid multibilayers, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2012, 2850–2859.
 
[19] Matwijczuk A., Kaminski D., Górecki A., Ludwiczuk A., Niewiadomy A., Mackowski S., Gagoś M., Spectroscopic Studies of Dual Fluorescence in 2-((4-Fluorophenyl) amino)-5- (2, 4 dihydroxybenzeno)-1, 3, 4-thiadiazole, The Journal of Physical Chemistry A, 2015, 10791–10805.
 
[20] Karcz D., Matwijczuk A., Boroń B., Creaven B., Fiedor L., Niewiadomy A., Gagoś M., Isolation and spectroscopic characterization of Zn(II), Cu(II), and Pd(II) complexes of 1,3,4-thiadiazole-derived ligand, Journal of Molecular Structure, 2016.
 
[21] Skrzypek A., Matysiak J., Niewiadomy A., Bajda M., Szymański P., Synthesis and biological evaluation of 1,3,4-thiadiazole analogues as novel AChE and BuChE inhibitors, Eur J Med Chem, 2013, 311–319.
 
[22] Andersson P.O., Bachilo S.M., Chen R.-L., Gillbro T., Solvent and temperature effects on dual fluorescence in a series of carotenes. Energy gap dependence of the internal conversion rate, The Journal of Physical Chemistry, 99 1995, 16199–16209.
 
[23] Prabhu A.A.M., Sankaranarayanan R., Venkatesh G., Rajendiran N., Dual fluorescence of fast blue RR and fast violet B: effects of solvents and cyclodextrin complexation, The Journal of Physical Chemistry B, 2012, 9061–9074.
 
[24] Kobayashi T., Futakami M., Kajimoto O., 4-(N, N-Dimethylamino) benzonitrile solvated by a polar molecule: Structural demand for charge-transfer state formation, Chemical Physics Letters, 1986, 63–66.
 
[25] Rettig W., Charge separation in excited states of decoupled systems—TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis, Angewandte Chemie International Edition in English, 1986, 971–988.
 
[26] Grabowski Z.R., Rotkiewicz K., Siemiarczuk A., Cowley D., Baumann W., Twisted intra-molecular charge-transfer states (TICT)-new class of excited-states with a full charge separation, Nouveau Journal De Chimie-New Journal of Chemistry, 1979, 443–454.
 
[27] Zachariasse K.A., Comment on “Pseudo-Jahn–Teller and TICT-models: a photophysical comparison of meta-and para-DMABN derivatives” [Chem. Phys. Lett. 305 (1999) 8]: The
PICT model for dual fluorescence of aminobenzonitriles, 2000, 8–13.
 
[28] Wei X., Yang X., Feng Y., Ning P., Yu H., Zhu M., Xi X., Guo Q., Meng X., A TICT based two-photon fluorescent probe for cysteine and homocysteine in living cells, Sensors and Actuators B: Chemical, 2016, 285–292.
 
[29] Ravi M., Soujanya T., Samanta A., Radhakrishnan T., Excited-state dipole moments of some Coumarin dyes from a solvatochromic method using the solvent polarity parameter, ENT, J. Chem. Soc., Faraday Trans., 1995, 2739–2742.
 
[30] Zhao G.-J., Han K.-L., pH-Controlled twisted intramolecular charge transfer (TICT) excited state via changing the charge transfer direction, Physical Chemistry Chemical Physics, 2010, 8914–8918.
 
[31] Sytnik A., Kasha M., Excited-state intramolecular proton transfer as a fluorescence probe
for protein binding-site static polarity, Proceedings of the National Academy of Sciences, 1994, 8627–8630.
 
[32] Zhao J., Ji S., Chen Y., Guo H., Yang P., Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials, Physical Chemistry Chemical Physics, 2012, 8803 8817.
 
[33] Klymchenko A.S., Demchenko A.P., Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer, Physical Chemistry Chemical Physics, 2003, 461–468.
 
[34] Demchenko A.P., Tang K.-C., Chou P.-T., Excited-state proton coupled charge transfer  modulated by molecular structure and media polarization, Chemical Society Reviews, 2013, 1379–1408.
 
[35] Pasternack R.F., Collings P.J., Resonance light scattering: a new technique for studying chromophore aggregation, Science, 1995, 935.
 
[36] Parkash J., Robblee J.H., Agnew J., Gibbs E., Collings P., Pasternack R.F., de Paula J.C., Depolarized resonance light scattering by porphyrin and chlorophyll a aggregates, Biophysical journal, 1998, 2089–2099.
 
[37] Binder H., Gutberlet T., Anikin A., Klose G., Hydration of the dienic lipid dioctadecadienoylphosphatidylcholine in the lamellar phase–an infrared linear dichroism and x-ray study on headgroup orientation, water ordering, and bilayer dimensions, Biophysical Journal, 1998, 1908–1923.
 
[38] Kasha M., Rawls H., Ashraf El-Bayoumi M., The exciton model in molecular spectroscopy, Pure and Applied Chemistry, 1965, 371–392.
 
[39] Kaminski D., Matwijczuk A., Hoser A.A., Niewiadomy A., Woźniak K., Gagoś M., Characteristics of 2-methylamino-5-(2.4 dihydroxybenzene)-1,3,4-thiadiazole chloride, in: Science and Industry – Spectroscopic studies in practice new challenges and potentials, UMCS – Maria Curie-Skłodowska University, Lublin 2011.
 
[40] Matwijczuk A., Kluczyk D., Górecki A., Niewiadomy A., Gagoś M., Solvent Effects on Molecular Aggregation in 4-(5-Heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol and 4-(5-Methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol, Journal of Physical Chemistry B,
2016, 7958–7969.
 
[41] Kluczyk D., Matwijczuk A., Górecki A., Karpińska M.M., Szymanek M., Niewiadomy A., Gagoś M., Molecular Organisation of Dipalmitoylphosphatidylcholine Bilayers Containing Bioactive Compounds 4-(5-heptyl-1,3,4-thiadiazol-2-yl) benzene-1,3-diol and 4-(5-methyl-1,3,4-thiadiazol-2-yl) benzene-1,3-diol, Journal of Physical Chemistry B, 2016, 12047– 12063.
 
[42] Matwijczuk A., Karcz D., Walkowiak R., Matwijczuk A., Niewiadomy A., Wybraniec S., Karwasz G.P., Gagoś M., Keto-enol tautomerism of 2-(4-fluorophenyl)-5-(2,4-dihydroxyphenyl)- 1,3,4-thiadiazole. Spectroscopic studies Tautomeria keto-enolowa w 2-(4-fluorofenylo)- 5-(2,4-dihydroksyfenylo)-1,3,4-tiadiazolu. Badania spektroskopowe, Przemysł Chemiczny 1, 2016, 40–44.
 
[43] Matwijczuk A.P., Karcz D., Walkowiak R. J., Furso J., Gładyszewska B., Wybraniec S., Niewiadomy A., Karwasz G.P. and Gagoś M., Effect of Solvent Polarizability on the Keto/ Enol Equilibrium of Selected Bioactive Molecules from the 1,3,4-Thiadiazole Group with a 2,4-Hydroxyphenyl Function, 2017.