Korozja naprężeniowa w kompozytach epoksydowo-szklanych monitorowana z zastosowaniem emisji akustycznej

Grzegorz Świt,

Anna Adamczak

Abstrakt
W budownictwie najczęściej używane są kompozyty z matrycą polimerową wypełnioną włóknami szklanymi, węglowymi, grafitowymi, polipropylenowymi oraz kevlarowymi. Szersze zastosowanie tychmateriałów jest jednak ograniczone ze względu na brak dokładnej wiedzy o ich właściwościach i zachowaniu w różnych warunkach ekspozycji i pod różnym typem obciążenia. W literaturze powszechnie istnieje opinia, że kompozyty włókniste na bazie żywic polimerowych są odporne na działanie środowiska zasadowego i kwasowego, co w przypadku uwzględnienia obciążenia tych kompozytów nie jest prawdą. Kompozyty te w wyniku obciążenia mogą ulegać korozji naprężeniowej lub erozji, co powoduje zmniejszenie ich wytrzymałości, a w konsekwencji pękanie. Stosując metodę emisji akustycznej, istnieje możliwość wykrywania i śledzenia procesów korozyjnych w kompozytach na bazie żywic epoksydowych i włókien szklanych, co jest niezmiernie ważne dla bezpieczeństwa użytkowanych konstrukcji.
Słowa kluczowe: monitoring, emisja akustyczna, korozja naprężeniowa, kompozyty polimerowo-szklane, procesy niszczące
References
[1] Karbhari V., Correlation of laboratory and field studies of aging degradation of composite systems in civil infrastructure, DURACOSYS’02, ed. A.A. BALKEMA PUBLISHERS, TOKYO, 2002, 11–18.
 
[2] Safaris Gorj M., Analysis of FRP Strengthened Reinforced Concrete Beams Using Energy Variation Method, World Applied Sciences Journal, 6 (1), 2009, 105–111.
 
[3] Leung Ch.K.Y., NgM.Y.M., Luk H.C.Y., Empirical Approach for Determining Ultimate FRP Strain in FRP-Strengthened Concrete Beams, Journal of Composite Constructions, 10, 2006, 125.
 
[4] Benmokrane B., Durability of FRP Compostites for Civil Infrastructure Applications, Durability of Materials and Structures in Building and Civil Engineering, Dunbeath, Caithness: Whittles Publishing, 2006, 300–343.
 
[5] fib. FRP reinforcement in RC structures, Féderation International du Béton, fib Task Group 9.3, fib Bulletin 40, Lausanne, Switzerland, September 2007, 147.
 
[6] Rafi M.M., Nadjai A., Ali F., Talamona D., Aspects of behaviour of CFRP reinforced concrete beams in bending, Construction and Building Materials, 2008, 277–285.
 
[7] Debaiky A.S., Green M. F., and Hope B. B., Long-Term Monitoring of Carbon Fiber- Reinforced Polymer-Wrapped Reinforced Concrete Columns Under Severe Environment, ACI Structural Journal, 2006, 865–873.
 
[8] Debaiky A. S., Nkurunziza G., Benmokrane B., Cousin P., Residual Tensile Properties of GFRP Reinforcing Bars after Loading in Severe Environments, Journal of Composites for Construction, 2006, 370–380.
 
[9] Kawada H., Kobiki A., Koyanagi J., Hosoi A., Long-Term Durability of Polymer Matrix Composites Under Hostile Environments, Materials Science and Engineering, 412(1–2), 2005159–164.
 
[10] Mufti A., Onofrei M., Benmokrane B., Banthia N., Boulfiza M., Newhook J., Bakht B., Tadros G., Brett P., Durability of GFRP Reinforced Concrete in Field Structures, 7th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures (FRPRCS-7), New Orleans, Louisiana, USA, 2005.
 
[11] Ray B.C., Effects of Changing Environment and Loading Speed on Mechanical Behavior of FRP Composites, Reinforced Plastics and Composites, 25(12), 2006, 1227–1240. 
 
[12] Micelli F., Nanni A., Durabililty of FRP rods for concrete structures, Construction and Building Materials, 18, 2004, 491–503.
 
[13] Pauchard V., Grosjean F., Campion-Boulharts H., Chateauminois A., Application of a stress-corrosion-cracking model to an analysis of the durability of glass/epoxy composites in wet environments, Composites Science and Technology, 62, 2002, 493–498. 
 
[14] Swit G, Durability of composite GRP under stress corrosion by acoustic emission, Duracosys’02, ed. A.A. Balkema Publishers, Tokyo 2002, 11–18.
 
[15] Swit G., Evaluation of compliance change in concrete beams reinforced by GRP using AE, Journal of Materials in Civil Engineering, American Society of Civil Engineering, Vol. 16, No. 5, USA 2004, 414–419.
 
[16] Świt G., Durability of stressed E glass fibre in alkaline medium, Recent Development in Durability Analysis of Composite Systems, Proceedings 4th International Conference Duracosys’99, ed. A.A. Balkema Publishers, Rotterdam 2000, 473–476.
 
[17] Myers T.J., Kytömaa H.K., Smit T.R., Environmental stress-corrosion cracking of fiberglass: Lessons learned from failures in the chemical industry, Journal of Hazardous Materials, Vol. 142, Issue 3, 11 April 2007, 695–704.
 
[18] Kumosa L., Kumosa M. and Armentrout D., Resistance to stress corrosion cracking of unidirectional ECR-glass/polymer composites for high voltage composite insulator applications, Composites Part A: Applied Science and Manufacturing, Vol. 34, Issue 1, 2003, 1–15.
 
[19] Khennane A., Melchers R.E., A Meso-scale finite element model for environmental stress corrosion of GFRP, Proceedings of The Fourth Australasian Congress on Applied Mechanics, 2005, 573–578.
 
[20] Khennane A., Melchers R.E., Durability of glass polymer composites subject to stress corrosion, ASCE Journal of Composite for Construction, 2003, 07, 10–117.
 
[21] Mortensen A., Concise encycloped of COMPOSITE MATERIALS, Second edition, 2007.
 
[22] Sekine H., Beaumont P.W.R., Stress-Corrosion Cracking in Unidirectional GFRP Composites, Key Engineering Materials, Vol. 430, 2010, 101–113.
 
[23] Imielińska K., Environmental stress cracking in e-glass and aramid/glass epoxy composites, Kompozyty, Vol. 6, 2006, 19–23.
 
[24] Almusallam T.H., Al-Salloum Y.A., Durability of GFRP Rebars in Concrete Beams under Sustained Loads at Severe Environments, Journal of Composite Materials, 40(7), 2006, 623–637.
 
[25] Chen Y., Davalos J.F., Ray I., Durability Prediction for GFRP Reinforcing Bars Using Short- Term Data of Accelerated Aging Tests, Journal of Composites for Construction, 10(4), 2006, 279–286.
 
[26] ISO 6259: 1997, Thermoplastic pipes – determination of tensile properties – Part 1: General test method.
 
[27] ASTM D 2290, Apparent tensile strength of parallel reinforced plastics by split disk method.