Utility assessment of biomass fly-ash for production of concrete products

Jakub Popławski,

Małgorzata Lelusz

Abstrakt

International agreements oblige our state to develop ecological sources of energy, one of which is biomass. During its combustion fly-ashes are produced. Several studies have shown that they might be useful in concrete production. The article presents a comparison of biomass fly-ash and coal fly-ash influence on the properties of cement composites. The replacement levels of cement by fly-ash (FA) were 20%, 40% and 60%. Biomass fly-ash FA(B) have replaced coal fly-ash by 0%, 50% and 100%. The compressive strength tests showed similarities in strength development of coal and biomass fly-ashes concretes. Specimens with biomass fly-ash presented similar or better abrasion resistance comparing to coal fly-ash samples.

Słowa kluczowe: biomass fly-ash, cement, concrete
References

[1] Rocznik statystyczny przemysłu 2015, eds. Witkowski J., Dmochowska H., Główny Urząd Statystyczny, Warszawa 2015, 119–442.
[2] BP Statistical Review of World Energy, eds. Dale S. British Petroleum, London 2016.
[3] Giergiczny Z., Popiół lotny w składzie cementu i betonu – monografia, Wydawnictwo Politechniki Śląskie, Gliwice 2013.
[4] Ministerstwo Gospodarki, Projekt Polityki energetycznej Polski do 2050 roku, Warszawa 2015.
[5] Uliasz-Bocheńczyk A., Mokrzycki E., Biomasa jako paliwo w energetyce, Rocznik Ochrona Środowiska, Vol. 17, 2015, 900–913.
[6] Ahmaruzzaman M., A review on the utilization of fly ash, Progress in Energy and Combustion Science, Vol. 36, 327–363.
[7] Baran T., Ostrowski M., Giergiczny Z., Wykorzystanie mieszanych popiołów lotnych z oddzielnego spalania pyłu węglowego i paliw wtórnych w produkcji spoiw wiążących, Materiały Budowlane, Vol. 12, 2015, 37–40.
[8] Giergiczny Z., Właściwości popiołu lotnego a trwałość betonu, Budownictwo Technologie Architektura, Vol. 39, 2007, 44–48.
[9] Cuenca J., Rodriguez J., Martín-Morales M., Sánchez-Roldán Z., Zamorano M., Effects of olive residue biomass fly ash as filler in self-compacting concrete, Construction and Building Materials, Vol. 40, 2013, 702–709.
[10] Lessard J.-M., Omran A., Tagnit-Hamou A., Gagne R., Feasibility of using biomass fly and bottom ashes in dry-cast concrete production, Construction and Building Materials, Vol. 132, 2017, 565–577.
[11] Gawlicki M., Graur Z., Ślęzak E., Popioły lotne ze spalania biomasy jako składniki spoiw drogowych,, Scientific Works of Institute of Ceramics and Building Materials, Vol. 19,
2014, 34–46.
[12] Madandoust R. Ranjbar M.M., Maghadam H.A., Mousavi S.Y., Mechanical properties and durability assessment of rice husk ash concrete, Biosystems Engineering, Vol. 110, 144–152.
[13] Sua-Iam G., Makul N., Utilization of coal- and biomass-fired ash in the production of selfconsolidating concrete: a literature review, Journal of Cleaner Production, Vol. 100, 2015, 59–76.
[14] Rodriguez de Sensale G., Strength development of concrete with rice-husk ash, Cement and
Concrete Composites, Vol. 28, 2006, 158–160.
[15] Jamil M., Khan M.N.N., Karim M.R., Kaish A.B.M.A., Zain M.F.M., Physical and chemical contributions of Rice Husk Ash on the properties of mortar, Construction and Building
Materials, Vol. 128, 2016, 185–198.
[16] Khalil N.M., Hassan E.M., Shakdofa M.M.E., Farahat M., Beneficiation of the huge waste quantities of barley and rice husks as well as coal fly ashes as additives for Portland cement, Journal of Industrial and Engineering Chemistry, Vol. 20, 2014, 2998–3008.
[17] Cheah C.B., Ramli M., The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview,
Resources, Conservation and Recycling, Vol. 55, 2011, 669–685.
[18] Wang S., Miller A., Llamazos E., Fonseca F., Baxter L., Biomass fly ash in concrete: Mixture proportioning and mechanical properties, Fuel, Vol. 87, 2008, 365–371.
[19] Rajamma R., Ball R.J., Tarelho L.A.C., Allen G.C., Labrincha J.A., Ferreira V.M., Characterisation and use of biomass fly ash in cement-based materials, Journal of Hazardous Materials, Vol. 172, 2009, 1049–1060.
[20] Elinwa A.U., Ejeh S.P., Effects of incorporation of sawdust incineration fly ash in cement
pastes and mortars, Journal of Asian Architecture and Building Engineering, Vol. 3, 2004, 1–7.
[21] Abdullahi M., Characteristics of wood ash/OPC concrete, Leonardo Electronic Journal of Practices and Technologies, Vol. 8, 2006, 9–16.
[22] Demonstration of manufacturing technology for concrete and CLSM utilizing wood ash from Wisconsin, eds. Naik T.R., Kraus R.N., Siddique R., Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, Milwaukee 2002.
[23] Elinwa A.U., Mahmood Y.A., Ash from timber waste as cement replacement material, Cement & Concrete Composites, Vol. 24, 2002, 219–222.
[24] Berra M., Mangialardi T., Paolini A.E., Reuse of woody biomass fly ash in cement-based materials, Construction Building Materials, Vol. 76, 2015, 286–296.
[25] Elinwa A.U., Ejeh S.P., Mamuda A.M., Assessing of the fresh concrete properties of selfcompacting concrete containing sawdust ash, Construction Building Materials, Vol. 22, 2008, 1178–1182.
[26] Zielenkiewicz W., Kamiński M., A conduction calorimeter for measuring the heat of cement hydration in the initial hydration period, Journal of Thermal Analysis and Calorimetry, Vol. 65, 2001, 335–340.
[27] Udoeyo F.F., Inyang H., Young D.T., Oparadu E.E., Potential of wood waste ash as an additive in concrete, Journal of Materials in Civil Engineering, Vol. 18, 2006, 605–611.
[28] Bittner J.D., Gąsiorowski S.A., Separacja popiołów lotnych i usuwanie amoniaku w Tampa Electric Big Bend, International Conference EuroCoalAsh, Warsaw, 6–8 October 2008.