Comparison of computing efficiency of different hydraulic vehicle damper models

Abstrakt

This paper deals with comparisons of computing efficiency of 20 damper models with functional and hybrid approaches, which can be used to solve typical problems in vehicle dynamics. Efficiency is evaluated based on model accuracy and computing time. The computed results of different damper models are compared to measurements of an actual car damper. Its damping characteristics were measured on a hydraulic damper test rig with three different excitations.

Słowa kluczowe: vehicle dynamics, modelling, hydraulic damper, shock absorber
References

[1] Caffarty S., Tomlinson G. R., Characterization of automotive dampers using higher order frequency response functions, Proc. IMechE, Vol. 211, PartD: J. Automobile Engineering, 1997, 181–203.
[2] Duym S., Simulation Tools, Modelling and Identification, for an Automotive Shock Absorber in the Context of Vehicle Dynamics, VSD, Vol. 33, 2000, 261–285.
[3] Dzierżek S., Knapczyk M., Maniowski M., Extending passive dampers functionality for specific ride and handling requirements, Czasopismo Techniczne z. 6–M, Wydawnictwo Politechniki Krakowskiej, 2008, 39–47.
[4] Guzzomi F., et al., Investigation of Damper Valve Dynamics Using Parametric Numerical Methods, Australian Fluid Mechanics Conference, Crown Plaza, Australia, 2007, 1123–1130.
[5] Liberati M., et al., Grey–box Modelling of a Motorcycle Shock absorber, 43rd IEEE Conference on Decision and Control, Atlantis–Bahamas, 2004, 755–760.
[6] Lion A., Loose S., Thermomechanically Coupled Model for Automotive Shock absorbers: Theory, Experiments and Vehicle Simulations on Test Tracks, Vehicle System Dynamics,
Vol. 37, no. 4, 2002, 241–261.
[7] Lozia Z., Zdanowicz P., Wykorzystanie różnych formalizmów opisu tarcia suchego w modelu ćwiartki samochodu stosowanym do symulacji testu diagn. stanu amortyzatorów, Teka Kom. Motoryzacji, PAN, z. 33–34, Kraków, 2008, 215–222.
[8] Maniowski M., Porównanie efektywności modeli amortyzatorów hydraulicznych, VIII Międzynarodowa Konf. Naukowo–Techn., Problemy Bezpieczeństwa Pojazdów, Kielce–Cedzyna, 2012.
[9] Patel A., Dunne J. F., NARX Neural Network Modelling of Hydraulic Suspension Dampers for Steady–state and Variable Temperature Operation, Vehicle System Dynamics, Vol. 40,
no. 5, 2003, 285–328.
[10] Ramos J.C., et al., Development of a thermal model for automotive twin–tube shock absorbers,
Applied Thermal Engineering, Vol. 25, 2005, 1836–1853.
[11] Schiehlen W., Hu B., Spectral simulation and shock absorber identification, Int. Journal of Non–Linear Mechanics, 38, 2003, 161–171.
[12] Van Kasteel R., et al., A new shock absorber model for use in vehicle dynamics studies, Vehicle System Dynamics, Vol. 43, no 9, 2005, 913–631.
[13] Zach C., et al., On the performance of rheological shock absorber models in full vehicle simulation, Vehicle System Dynamics, Vol.45, 2007, 981–999.

  • O autorach