Assessment of the quality of epoxy coating in the automotive industry

Agata Dudek,

Barbara Lisiecka,

Katarzyna Strzelczak

Abstrakt

Coraz częściej, konwencjonalne i zaawansowane powłoki samochodowe wymagają materiałów o ściśle określonych właściwościach powierzchniowych, spełniających odpowiednie wymagania i wpływających na rozwój przemysłu samochodowego. Głównym założeniem badania była analiza mikrostruktury i przyczepności powłoki epoksydowej do podłoża stalowego. Uzyskano wyniki badań mikrostruktury za pomocą mikroskopii optycznej, skaningowej SEM/EDX, analizy XRD oraz przeprowadzono test adhezji powłoki.  

Increasingly, many conventional and advanced automotive coatings applications demand materials with well-defined surface properties, fulfilling specific requirements and affecting automotive industrial development. The main assumption for the study was to analyze the microstructure and adhesion of epoxy powder coating on a steel substrate. The results of optical microscope metallographic, SEM/EDX, XRD analysis and adhesion test are presented.

Słowa kluczowe: wysokowytrzymała stal niskostopowa (HSLA), S600 MC, powłoka epoksydowa, test adhezji, ISO 2409:2013, high strength low alloy (HSLA), epoxy powder coating, cross–cut test
References

[1]           Shirehjini F.T., Danaee I., Eskandari H., Zarei D., Effect of Nano Clay on Corrosion Protection of Zinc-rich Epoxy Coatings on Steel 37, Journal of Materials Science & Technology, vol. 32(11), 2016, 1152–1160.

[2]           Sutar V., Dharankar C.S., Thirupathi Raju B., High Strength Steel for Automotive Applications, International Research Journal of Engineering and Technology, vol. 3(5), 2016, 966–968.

[3]           Ranjbarnodeh E., Pouranvari M., Fischer A., Influence of welding parameters on residual stresses in dissimilar HSLA steels welds, Association of Metallurgical Engineers of Serbia, vol. 19(1), 2013, 33–43.

[4]           Saha D.C., Westerbaan D., Nayak S.S., Biro E., Gerlich A.P., Zhou Y., Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels, Materials Science and Engineering A, vol. 607(23), 2014, 445–453.

[5]           Ulewicz R., Novy F., Mazur M., Szataniak P., Fatigue properties of the HSLA steel in high and ultra-high cycle region, Production Engineering Archives, vol. 4(3), 2014, 18–21. 

[6]           Suay J.J., Rodriguez M.T., Razzaq K.A., Carpio J.J., Saura J.J., The evaluation of anticorrosive automotive epoxy coatings by means of electrochemical impedance spectroscopy, Progress in Organic Coatings, vol. 46(2), 2003, 121–129.

[7]           Akafuah N.K., Poozesh S., Salaimeh A., Patrick G., Lawler K., Saito K., Evolution of the Automotive Body Coating Process – A Review, Coatings, vol. 6(2), 2016, 1–22.

[8]           Canosa G., Alfieri P.V., Giudice C.A., High-solids, one-coat paints based on aliphatic epoxy resin-siloxanes for steel protection, Progress in Orgainc Coatings, vol. 77(9), 2014, 1459–1464.

[9]           Roselli S.N., Romagnoli R., Deya C., The anti-corrosion performance of water-borne paints in long term tests, Progress in Organic Coatings, vol. 109, 2017, 172–178.

[10]        David R., Raja V.S., Singh S.K., Gore P., Development of anti-corrosive paint with improved toughness using carboxyl terminated modified epoxy resin, Progress in Organic Coatings, vol. 120, 2018, 58–70.

[11]        Liu S., Chevali V.S., Xu Z., Hui D., Wang H., A review of extending performance of epoxy resins using carbon nanomaterials, Composites Part B: Engineering, vol. 136, 2018, 197–214.

[12]        ISO 2409:2013Paints and varnishes – Cross-cut test,fourth edition.