A commentary on the respirometric evaluation of biodegradable cod fractions in industrial wastewater

Tomasz Baczyński,

Piotr Beńko


This paper presents considerations on selected methodological aspects of respirometric COD fractionation in industrial wastewater which may differ from more common applications of such methodology for municipal wastewater. This concerns: the presence of interfering substances; problems with the elimination of nitrification; the importance of recognising biomass metabolism; differences of growth coefficient; the inclusion of non-canonical COD fractions and toxic effects. The discussion is based on a literature review and the authors’ own experience. As a conclusion, a preparatory procedure is proposed to assure the correct performance of respirometric COD fractionation for industrial wastewater, especially for more complex chemical effluents.

Słowa kluczowe: COD fractionation, industrial wastewater, respirometry

[1]               AQUASIM, http://www.eawag.ch/en/department/siam/software/ (access: 07.06.2018).

[2]               Babu G., Varghese W., Biodegradation of cyclohexanone and cyclohexanol by the activated sludge process, Journal of Scientific & Industrial Research, Vol. 58/1999, 864–868.

[3]               Baczyński T., Przegląd metod służących wyznaczaniu frakcji ChZT w ściekach, “Gaz, Woda i Technika Sanitarna”, Vol. 84 (10)/2010, 29–35.

[4]               Baczynski T., Kulakowski P., Biodegradable fractions in paper industry wastewater, [In:] IWA Specialized Conference on Nutrient Management in Wastewater Treatment Processes and Recycle Streams, LEMTECH Consulting, Krakow 2005, 1345–1349.

[5]               Coen F., Petersen B., Vanrolleghem P., Vanderhaegen B., Henze M., Model–based characterisation of hydraulic, kinetic and influent properties of an industrial WWTP, “Water Science and Technology”, Vol. 37 (12)/1998, 317–326.

[6]               Cokgor E.U., Insel G., Aydin E., Orhon D., Respirometric evaluation of a mixture of organic chemicals with different biodegradation kinetics, “Journal of hazardous materials”, Vol. 161 (1)/2009, 35–41.

[7]               Ekama G.A., Dold P.L., Marais G.V., Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems, “Water Science and Technology”, Vol. 18 (6)/1986, 91–114.

[8]               Fan J., Vanrolleghem P.A., Lu S., Qiu Z., Modification of the kinetics for modeling substrate storage and biomass growth mechanism in activated sludge system under aerobic condition, “Chemical engineering science”, Vol. 78/2012, 75–81.

[9]               Ginestet P., Audic J.M., Urbain V., Block J.C., Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide, “Applied and Environmental Microbiology”, Vol. 64 (6)/1998, 2266–2268.

[10]           Guisasola A., Sin G., Baeza J.A., Carrera J., Vanrolleghem P.A., Limitations of ASM1 and ASM3: a comparison based on batch oxygen uptake rate profiles from different full–scale wastewater treatment plants, “Water Science and Technology, Vol. 51 (10–11)/2005, 69–77.

[11]           Helle S.S., Duff S.J., Multi–component kinetics of activated sludge treatment of bleached kraft mill effluent, “Water Science and Technology”, Vol. 50 (3)/2004, 11–20.

[12]           Insel G., Karahan O., Özdemir S., Pala L., Katipoğlu T., Cokgör E.U., Orhon D., Unified basis for the respirometric evaluation of inhibition for activated sludge, “Journal of Environmental Science and Health Part A”, Vol. 41 (9)/2006, 1763–1780.

[13]           Insel G., Celikyilmaz G., Ucisik‐Akkaya E., Yesiladali K., Cakar Z.P., Tamerler C., Orhon D., Respirometric evaluation and modeling of glucose utilization by Escherichia coli under aerobic and mesophilic cultivation conditions, “Biotechnology and bioengineering”, Vol. 96 (1)/2007, 94–105.

[14]           Jaromin K. M., Szaja A., Łagód G. Charakterystyka ścieków komunalnych określana na podstawie udziału frakcji ChZT, [In:] Polska Inżynieria Środowiska. Prace. Tom I, eds. M. R. Dudzińska, A. Pawłowski, Komitet Inżynierii Środowiska PAN, Lublin 2012, 115–130.

[15]           Karahan–Gül Ö., Artan N., Orhon D., Henze M., Van Loosdrecht M.C., Respirometric assessment of storage yield for different substrates, “Water Science and Technology”, Vol. 46 (1–2)/2002, 345–352.

[16]           Lehtovirta–Morley L.E., Verhamme D.T., Nicol G.W., Prosser J.I., Effect of nitrification inhibitors on the growth and activity of Nitrosotalea devanaterra in culture and soil, “Soil Biology and Biochemistry”, Vol 62/2013, 129–133.

[17]           Marx C., Ahnert M., Krebs P., Kühn V., The adaptation of nitrifying microorganisms to inhibiting substances at meso–and psychrophilic temperature conditions, “Water Science and Technology”, Vol. 68 (1)/2013, 83–90.

[18]           Nowak O., Schweighofer P., Svardal K., Nitrification inhibition–a method for the estimation of actual maximum autotrophic growth rates in activated sludge systems, “Water Science and Technology”, Vol. 30 (1)/1994, 9–19.

[19]           Nelson D.W., Huber D., Nitrification inhibitors for corn production, corn.agronomy.wisc.edu/Management/pdfs/NCH55.pdf (access: 07.06.2018).

[20]           Orhon D., Babuna F.G., Karahan O., Industrial wastewater treatment by activated sludge, IWA Publishing, London 2009.

[21]           Rezouga F., Hamdi M., Sperandio M., Variability of kinetic parameters due to biomass acclimation: case of para–nitrophenol biodegradation, “Bioresource Technology”, Vol. 100 (21)/2009, 5021–5029.

[22]           Spanjers H., Vanrolleghem P.A., Respirometry, [In:] Experimental methods in wastewater treatment, eds. van Loosdrecht M.C., Nielsen P.H., Lopez–Vazquez C.M., Brdjanovic D., IWA publishing, London 2016.

[23]           Surmacz–Gorska J., Gernaey K., Demuynck C., Vanrolleghem P., Verstraete W., Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements, “Water Research”, Vol. 30 (5)/1996, 1228–1236.

[24]           Tünay O., Zengin G.E., Kabdaşlı I., Karahan Ö., Performance of magnesium ammonium phosphate precipitation and its effect on biological treatability of leather tanning industry wastewaters, “Journal of Environmental Science and Health, Part A”, Vol. 39 (7)/2004, 1891–1902.

[25]           Van Loosdrecht M.C., Lopez-Vazquez C.M., Meijer S.C., Hooijmans C.M., Brdjanovic D., Twenty–five years of ASM1: past, present and future of wastewater treatment modelling, “Journal of Hydroinformatics”, Vol. 17 (5)/2015, 697–718.

[26]           Van Loosdrecht M.C., Nielsen P.H., Lopez–Vazquez C.M., Brdjanovic D., Experimental methods in wastewater treatment, IWA publishing, London 2016.

[27]           Vanrolleghem P.A., Sin G., Gernaey K.V., Transient response of aerobic and anoxic activated sludge activities to sudden substrate concentration changes, “Biotechnology and Bioengineering”, Vol. 86 (3)/2004, 277–290.

[28]           Wang Y., Li W., Irini A., A novel and quick method to avoid H2O2 interference on COD measurement in Fenton system by Na2SO3 reduction and O2 oxidation, “Water Science and Technology”, Vol. 68 (7)/2013, 1529–1535.

[29]           Wentzel M.C., Mbewe A., Ekama G.A., Batch test for measurement of readily biodegradable COD and active organism concentrations in municipal waste waters, “WATER SA-PRETORIA”, Vol. 21/1995, 117–124.

[30]           Wissemeier A.H., Linzmeier W., Gutser R., Weigelt W., Schmidhalter U., The new nitrification inhibitor DMPP (ENTEC®)—Comparisons with DCD in model studies and field applications, [In:] Plant Nutrition, eds. Horst H.J. et al., Springer, Dordrecht 2001, 702–703.