Usage of a zero-sum differential game in the optimal control of an object described by a nonlinear model

Leszek Mikulski,

Dorota Kropiowska


This article presents the usage of a zero-sum differential game to control a nonlinear object, which, in the analysed problem, was a mathematical pendulum. The obtained control was optimal with regard to adopted quality indicator for the worst interference. The two-point boundary value problem was solved numerically by means of the Dircol software application. Numerical solutions, meeting all the necessary optimality conditions, were obtained for different values of the rough parameter and for different values of damping.

Słowa kluczowe: robust control, optimal control, two-point boundary value problem, minimum principle

[1]     Basar T., Olsder G.J., Dynamic Noncooperative Game Theory,Academic Press, London/New York, 1995.

[2]     Breitner M.H., Robust optimale Rückkopplungssteuerungen gegen unvorhersehbare Einflüsse: Differentialspielansatz, numerische Berechnung und Echtzeitapproximation, Reihe 8: Mess, Steuerung und Regelungstechnik, VDI Verlag, Düsseldorf, 1996.

[3]     Breitner M.H., Pesch H.J., Grimm W., Complex Differential Games of Pursuit-Evasion Type with State Constraints, Part 1: Necessary Conditions for Optimal Open-Loop Strategies, Journal of Optimization Theory and Applications, Vol. 78, No. 3, 1993, 419–441.

[4]     Butz T., von Stryk O., Modelling and Simulation of Electro- and Magnetorheological Fluid Dampers, ZAMM, Vol. 82, No. 1, 2002, 3–20.

[5]     Hendzel Z., Penar P., Zastosowanie dwuosobowej gry różniczkowej o sumie zerowej do sterowania elementem mechatronicznym, Modelowanie Inżynierskie No. 60, 2016, 21–27.

[6]     Pesch H.J., A Practical Guide to the Solution of Real-Life Optimal Control Problems, Control and Cybernetics, 23, 1/2, 1994, 7–60.

[7]     Rettig U., von Stryk O., Optimal and Robust Damping Control for Semi-Active Vehicle Suspension, Progress in Industrial Mathematics at ECMI 2002, book series MATHINDUSTRY, Vol. 5, 2002, 353–361.

[8]     Starr A.W., Ho Y.C.,Nonzero-Sum Differential Games,Journal of Optimization Theory and Applications, Vol. 3, No. 3, 1969, 184–206.

[9]     von Stryk O.,User’s guide for Dircol (Version 2.1): a direct collocation method for the numerical solution of optimal control problems, Technical report, Simulation and Systems Optimization Group, TU Darmstadt, 2002.

[10]     Willems J.C., Dissipative Dynamical Systems, Part I: General Theory, Archive for Rational Mechanics and Analysis,Vol. 45, 1972, 321–351