The application of nimh batteries in a light-duty electric vehicle

Marcin Noga,

Zdzisław Juda

Abstrakt

This article presents the results of experimental tests and simulations of a light-duty electric vehicle, in which the original lead-acid battery pack was replaced with a lightweight pack of nickel-metal-hydride (NiMH) batteries, which enabled a significant increase to the vehicle’s load capacity. The research was mainly focused on the aspect of electricity consumption and prediction of the range of the vehicle equipped with a new battery pack. The operation of a vehicle with total weights of 500 kg and 740 kg was analysed. Recorded vehicle speed waveforms were used to simulate vehicle motion in the Matlab/Advisor environment. The experiments showed a reduction in the specific energy consumption of a vehicle of lower weight, while simulation tests showed good compliance of the results of electricity consumption with experiments in relation to both the considered total vehicle weights.

Zastosowanie akumulatorów nimh w lekkim użytkowym pojeździe elektrycznym

Streszczenie

W artykule zaprezentowano wyniki badań eksperymentalnych i symulacyjnych lekkiego, elektrycznego pojazdu użytkowego, w którym oryginalny zestaw akumulatorów kwasowo-ołowiowych został zastąpiony lekkim pakietem akumulatorów niklowo-metalowo-wodorkowych, co pozwoliło znacznie zwiększyć ładowność pojazdu. Badania skupiono głównie na aspekcie zużycia energii elektrycznej i predykcji zasięgu pojazdu wyposażonego w nowy zestaw akumulatorów. Analizowano zachowanie pojazdu o masie 500 kg oraz 740 kg. Przebiegi zmian prędkości zarejestrowane podczas jazd testowych użyto do przeprowadzenia symulacji ruchu pojazdu w środowisku Matlab/Advisor. Wyniki badań eksperymentalnych wskazały na ograniczenie jednostkowego zużycia energii przez pojazd o mniejszej masie, natomiast w badaniach symulacyjnych uzyskano dobrą zgodność zużycia energii z rezultatami eksperymentów w obu analizowanych przypadkach. 

Słowa kluczowe: electric vehicle, NiMH battery, energy consumption, simulation, experimental research , pojazd elektryczny, akumulatory NiMH, zużycie energii, symulacja, badania eksperymentalne
References

[1] Aditya J.P., Ferdowsi M., Comparison of NiMH and Li-ion batteries in automotive applications, Proceedings of 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008, 10.1109/vppc.2008.4677500.

[2] Bazaras Z., Timofeev B., Vasilieva N., Vilkauskas A., Raslavicius L., Keršys R., Current  state of the global electric power engineering, Proceedings of 16th International Scientific Conference Transport Means 2012, Kaunas, Lithuania, 25–26th October 2012, 267–269.

[3] Brooke L, Not dead yet: The resilient ICE looks to 2050, Automotive Engineering, vol. 5(4), 2018, 22–23.

[4] Feng X., Ouyang M., Liu X., Lu L., Xia Y., He X., Thermal runaway mechanism of lithium ion battery for electric vehicles: A review, Energy Storage Materials, vol. 10, 2018, 246–267, 10.1016/j.ensm.2017.05.013.

[5] Gaines L., The future of automotive lithium-ion battery recycling: Charting a sustainable course, Sustainable Materials and Technologies, 1–2, 2014, 2–7, 10.1016/j. susmat.2014.10.001.

[6] Hao H., Mu Z., Jiang S., Liu Z., Zhao F., GHG Emissions from the Production of LithiumIon Batteries for Electric Vehicles in China, Sustainability, vol. 9(4), 2017, 504, 10.3390/su9040504.

[7] Johnson N.M., Battery technology for CO2 reduction, [in:] Folkson, R., (Ed.): Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, Woodhead Publishing, Sawston, 2014, 582–631, 978-0-85709-522-0.

[8] Juda Z., Noga M., The influence of battery degradation level on the selected traction parameters of a light-duty electric vehicle, IOP Conf. Ser.: Mater. Sci. Eng., vol. 148, 2016, 012042, 10.1088/1757-899x/148/1/012042.

[9] Karden E., Development trends for future automobiles and their demand on the battery, [in:] Garche J., Karden E., Moseley P. T., Rand D.A.J., (Eds.): Lead-Acid Batteries for Future Automobiles, Elsevier , Amsterdam, 2017, 3–25, 978-0-44463-700-0.

[10] Luo W., Zhu S., Gong J., Zhou Z., Research and Development of Fire Extinguishing Technology for Power Lithium Batteries, Procedia Engineering, vol. 211, 2018, 531–537, 10.1016/j.proeng.2017.12.045.

[11] Markel T., Brooker A., Hendricks T., Johnson V., Kelly K., Kramer B., O’Keefe M., Sprik S., Wipke K., ADVISOR: A systems analysis tool for advanced vehicle modeling, J of Power Sources, vol. 110(2), 2002, 255-266, 10.1016/s0378-7753(02)00189-1.

[12] Noga M., Various aspects of research of the SI engine with an additional expansion process, MATEC Web of Conferences, vol. 118, 2017, 00017, 10.1051/matecconf/201711800017.

[13] Noga M., Juda Z., Energy Efficiency of a Light-Duty Electric Vehicle, Proceedings of 21st International Scientific Conference Transport Means 2017, Juodkrantė, Lithuania, 20-22 September 2017, 78–85.

[14] Onomura Y., Inazu M., Ito M., Minohara T., Nozaki K., Secondary Battery Development for Hybrid Vehicles at Toyota, Toyota Technical Review, vol. 57(2), 2011, 9–18.

[15] Saga K., Development of Powertrain Technology for Even Better Fuel Efficiency. Toyota Technical Review, vol. 60, 2014, 4–12.

[16] Shin J.W., Kim J.O., Choi J.Y., Oh S.H., Design of 2-speed transmission for electric commercial vehicle, International Journal of Automotive Technology, vol. 15(1), 2014, 145–150, 10.1007/s12239-014-0016-8.

[17] Ślaski G., Ohde B., A statistical analysis of energy and power demand for the tractive purposes of an electric vehicle in urban traffic – an analysis of a short and long observation period, IOP Conf. Ser.: Mater. Sci. Eng., vol. 148, 2016, 012027, 10.1088/1757-899X/148/1/012027.

[18] Xing Y., Ma E.W., Tsui K.L., Pecht M., Battery Management Systems in Electric and Hybrid Vehicles, Energies, vol. 4(11), 2011, 1840-1857, doi:10.3390/en4111840.

[19] Yan S., Meng T., Young K., Nei J., A Ni/MH Pouch Cell with High-Capacity Ni(OH)2, Batteries, vol. 3(4), 2017, 38, 10.3390/batteries3040038.

[20] Yan S., Nei J., Li P., Young K., Ng, K., Effects of Cs2CO3 Additive in KOH Electrolyte Used in Ni/MH Batteries, Batteries, vol. 3(4), 2017, 41, 10.3390/batteries3040041.

[21] Young K.H., Research in Nickel/Metal Hydride Batteries 2016, Batteries, vol. 2(4), 2016, 31, 10.3390/batteries2040031.

[22] Young K.H., Ng K.Y.S., Bendersky L.A., A Technical Report of the Robust Affordable Next Generation Energy Storage System-BASF Program, Batteries, vol. 2(1), 2016, 2, 10.3390/batteries2010002.

[23] Zhu J.H., Liu C.T., Pike L.M., Liaw P.K., A thermodynamic interpretation of the size-ratio limits for laves phase formation, Metallurgical and Materials Transactions A, vol. 30(5), 1999, 1449–1452, 10.1007/s11661-999-0292-5.

[24] Zhu W.H., Zhu Y., Davis Z., Tatarchuk B.J., Energy efficiency and capacity retention of Ni–MH batteries for storage applications, Applied Energy, vol. 106, 2013, 307-313, 10.1016/j.apenergy.2012.12.025.

[25] 20 Truths About the GM EV1 Electric Car, http://web.archive.org/web/20090123001021/http://www.greencar.com:80/features/gm-ev1/ (access: 30.06.2018).

[26] ADVISOR Documentation, http://adv-vehicle-sim.sourceforge.net/advisor_doc.html (date of access 2018-06-30).

[27] BU-107: Comparison Table of Secondary Batteries, https://batteryuniversity.com/learn/ article/secondary_batteries (access: 15.05.2018). 

[28] Patent encumbrance of large automotive NiMH batteries, https://en.wikipedia.org/wiki/Patent_encumbrance_of_large_automotive_NiMH_batteries (access 30.06.2018).