Assessing the dynamic response of a steel pipeline to a strong vertical mining tremor using the multiple support response spectrum method

Paweł Boroń,

Joanna Dulińska

Abstrakt

This paper presents an analysis of the dynamic response of an overground steel pipeline during a strong mining shock. The analysis was conducted using various calculation methods- a time history (THA), a response spectrum (RSA) and a multiple support response spectrum analysis (MSRS). For the THA and MSRS methods, non-uniform effects of ground excitation were taken into account. During the analyses, the bending moment was calculated. On the basis of obtained results, it can be noted that the non-uniform effects had a significant impact on the dynamic behaviour of the pipeline and it was indicated that the MSRS method led to more accurate estimation than the RSA.

Streszczenie

W artykule przedstawiona została analiza odpowiedzi dynamicznej gazociągu na rzeczywisty wstrząs  górniczy. W obliczeniach zastosowano metodę całkowania równań ruchu (THA), spektrum odpowiedzi (RSA) oraz wielopodporowego spektrum odpowiedzi (MSRS). W metodzie THA i MSRS uwzględnione zostały efekty związane z nierównomiernością wymuszenia kinematycznego. W trakcie analizy obliczono momenty zginające w konstrukcji, na których podstawie zauważono, że nierównomierne wymuszenie ma wyraźny wpływ na wartość odpowiedzi dynamicznej.

Słowa kluczowe: non-uniform excitations, multiple support response spectrum, nierównomierne wymuszenie, wielopodporowe spectrum odpowiedzi
References

[1] ANSYS Workbench User’s Guide, ANSYS Inc. 2018.

[2] Czerwionka L., Tatara T., Standard response spectra from chosen mining regions at Upper Silesian Coalfield, Technical Transactions, vol. 2-B, 2007, 11-18.

[3] Der Kiureghian A., Neuenhofer A., Response spectrum method for multi-support seismic excitations, Earthquake Engineering and Structural Dynamics, Vol. 8, 1992, 713-740.

[4] Dulinska J., Fabijanska M., Large-dimensional shells under mining tremors from various mining regions in Poland, International Journal of Civil, Environmental, Structural,  Construction and Architectural Engineering, Vol. 5, no 11, 2011, 567-574.

[5] Gad E., Wilson J., Moore A., Richards A., Effects of mine blasting on residential structures, Journal of Performance of Constructed Facilities, Vol. 19, issue 3, 2005, 222-228.

[6] Harichandran R., Vanmarcke E., Stochastic variation of earthquake ground motion in space and time, Journal of Engineering Mechanics, ASCE, Vol. 112, 1986, 154-174.

[7] Hindy A., Novak M., Response of pipelines to random ground motion, Journal of the Engineering Mechanics Division, Vol. 106, 1980, 339– 360.

[8] Jihong Y., Zhiqiang Z., Xianming L., A simplified multisupport response spectrum method, Earthquake Engineering and Engineering Vibration, Vol. 11, no. 2, 2012, 243-256.

[9] Konakli K., Der Kiureghian A., Extended MSRS rule for seismic analysis of bridges subjected to differential support motions, Earthquake Engineering and Structural Dynamics, Vol. 40, 2011, 1315-1335.

[10] Lin Y.K., Zhang R., Yong Y., Multiply supported pipeline under seismic wave excitations, Journal of Engineering Mechanics, ASCE, Vol. 116, 1990, 1094-1108.

[11] Lupoi A., The evaluation of bridges response under a spatial varying ground motion, Third International fib Congress incorporating the PCI Annual Convention and Bridge Conference 2010, Vol. 5, 2010, 4270-4286

[12] Tatara T., Pachla F., Kubon P., Experimental and numerical analysis of an industrial RC tower, Bulletin of Earthquake Engineering, Vol. 15, issue 5, 2017, 2149-2171.

[13] Zembaty Z., Vibrations of bridge structure under kinematic wave excitations, Journal of Structural Engineering, ASCE, Vol. 123, 1997, 479-488.