The flexural capacity of laminated veneer lumber beams strengthened with AFRP and GFRP sheets

Michał Bakalarz

Abstrakt

This paper presents the results of preliminary tests focused on the strengthening of laminated veneer lumber (LVL) beams with aramid fibre-reinforced polymer (AFRP) and glass fibre-reinforced polymer (GFRP) sheets. Edgewise bending tests were performed on elements throught 4-point loading. The following two types of strengthening arrangements were investigated: sheets bonded to the bottom face along the entire length of the element, and a U-shaped half-wrapped type of reinforcement. The reinforcement ratios of the beams strengthened with GFRP sheets were 0.3% and 1.0% for the first and second strengthening arrangements, respectively; for the beams strengthened with AFRP sheets, these ratios were 0.2% and 0.64%, respectively. The experimental data revealed an increase in both the bending strength and the stiffness in bending of the strengthened elements. The failure mode was dependent upon the type of the strengthening configuration.

Streszczenie

W artykule przedstawione zostały rezultaty badań belek z forniru klejonego warstwowo wzmocnionych tkaninami zbrojonymi włóknem aramidowym (AFRP) i szklanym (GFRP). Badania przeprowadzono na próbkach w układzie krawędziowym poddanych 4-punktowemu zginaniu. W badaniach wstępnych przyjęto dwie konfiguracje wzmocnienia: maty przyklejone do dolnej powierzchni elementów na całej długości i tzw. zbrojenie typu U doprowadzone do połowy wysokości przekroju poprzecznego. Stopień zbrojenia elementów wynosił 0.3% i 1.0% dla elementów zbrojonych matami GFRP oraz 0.2% i 0.64% dla belek zbrojonych matami aramidowymi. Wyniki badań wykazały wzrost wytrzymałości na  zginanie i sztywności przy zginaniu. Postać zniszczenia zależna była od przyjętej konfiguracji wzmocnienia.

Słowa kluczowe: LVL, fabrics, timber structures, aramid fibres, glass fibres, strengthening, tkaniny, konstrukcje drewniane, włókna aramidowe, włókna szklane, wzmacnianie
References

[1] Adam M., Luhring A., Popp M., Fecht S., Vallee T., Pre-applicable structural adhesives for timber engineering: Glued-in G-FRP rods, International Journal of Adhesion & Adhesives 67/2016, 121-127. http://dx.doi.org/10.1016/j.ijadhadh.2015.12.034 (access: 10.12.2018).

[2] Brol J., Wzmacnianie zginanych belek z drewna klejonego taśmami GARP na etapie produkcji, Wiadomości konserwatorskie 26/2009, 345-353.

[3] Brol J., Grygierek K., Wzmacnianie zginanych belek z drewna klejonego taśmami GARP nie dochodzącymi do podpór, 5th International Conference “New Trends on Statics and  Dynamics of Buildings”, Bratislava Slovakia, 19–20 October 2006, 51-54.

[4] Fiorelli J., Dias A.A., Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber, Materials Research 6 (2)/2003, 193-202.

[5] Gentile C., Svecova D., Saltzberg W., Rizklalla S.H., Flexural strengthening of timber beams using GFRP, Proceedings of Advanced Composite Materials in Bridges and Structures, August 2000, 637-644.

[6] Guan Z.W., Rodd P.D., Pope D.J., Study of glulam beams pre-stressed with pultruded GRP, Computers and Structures 83/2005, 2476-2487.

[7] Hallstrom S., Grenesttedt J.L., Failure analysis of laminated timber beams reinforced with glass fibre composites, Wood Science and Technology 31/1997, 17-34.

[8] Kossakowski P., Influence of anisotropy on the energy release rate G(i) for highly orthotropic materials, Journal of Theoretical and Applied Mechanics 45/2007, 739-752.

[9] Kossakowski P., Load-bearing capacity of wooden beams reinforced with composite sheets, Structure & Environment 3 (4)/2011, 14-22.

[10] Madhoushi M., Ansell M.P., Experimental study of static and fatigue strengths of pultruded GFRP rods bonded into LVL and glulam, International Journal of Adhesion & Adhesives 24/2004, 319-325.

[11] Morales-Conde M.J., Rodríguez-Liñán C., Rubio-de Hita P., Bending and shear reinforcements for timber beams using GFRP plates, Construction and Building Materials 96/2015, 461-472.

[12] PN-EN 408+A1:2012 Timber structures. Structural timber and glued laminated timber. Determination of some physical and mechanical properties.

[13] PN-EN 14374:2005 Timber structures. Structural laminated veneer lumber. Requirements.

[14] Raftery G.M., Harte A.M., Repair of glulam beams using GFRP rods, WIT Transactions on The Built Environment 109/2009, 417-427.

[15] Sedivka P., Bomba J., Bohm M., Zeidler A., Determination of strength characteristics of construction timber strengthened with carbon and glass fibre composite using a destructive method, BioResources 10(3)/2015, 4674-4685.

[16] Sena-Cruz J., Branco J., Jorge, M., Barros J. A.O., Silva C., Cunha V.M.C.F., Bond behavior between glulam and GFRP’s by pullout tests, Composites Part B: Engineering 43(3)/2012, 1045-1055.

[17] Steico, https://www.steico.com/index.php?id=73&L=3 (access: 10.12.2018).

[18] Technical data sheet S&P A-sheet, http://www.sp-reinforcement.pl/pl-PL/produkty/ maty/sp-sheet (access: 10.12.2018).

[19] Technical data sheet S&P G-Sheet E/AR 90/10, http://www.sp-reinforcement.pl/pl-PL/ produkty/maty/sp-g-sheet-e-9010-sp-g-sheet-ar-9010-typ-b (access: 10.12.2018).

[20] Technical data sheet S&P Resin 55 HP, http://www.sp-reinforcement.pl/pl-PL/ produkty/zywica-epoksydowa/sp-resin-55-hp (access: 10.12.2018).

[21] Theakston F.H., A feasibility study for strengthening timber beams with fibre glass, Canadian Agricultural Engineering January 1965, 17–19.

[22] Thorhallsson E.R., Hinriksson G.I., Snæbjorns J.T., Strength and stiffness of glulam beams reinforced with glass and basalt fibres, Composites Part B 2016, 1-8.

[23] Yusof A., Saleh A.L., Flexural strengthening of timber beams using glass fibre reinforced polymer, Electronic Journal of Structural Engineering 10/2010, 48-56.