New Polish guidelines regarding human exposure to vibrations in buildings

Alicja Kowalska-Koczwara,

Krzysztof Stypuła

Abstrakt

Following global trends, Polish regulations on human exposure to vibration in buildings were changed and new Polish guidelines were published in June 2017. In accordance with international trends, two methods of assessment have been added to the regulations: basic RMS method and ad-ditional VDV method. For more clarity of RMS method, the human vibration perceptivity ratio (HVPR) was introduced to new Polish regulations. In the appendix to the Polish standard, the vi-bration dose value (VDV) method is presented. The third important change in the new version of the Polish standard is measurement equipment that should be used for human perception evaluation. New regulations have precisely described what kind of equipment should be used for low-frequency recording and a new measurement disc for the human perception of vibration on floors has been introduced to the Polish standard.

Keywords: human exposure to vibration, standard regulations, RMS method, VDV,  measurements

Nowe polskie wytyczne dotyczące narażenia ludzi na wibracje w budynkach

Streszczenie

Podążając za światowymi trendami, polskie przepisy dotyczące narażenia ludzi na wibracje w budynkach zostały zmienione, a nowe polskie wytyczne zostały opublikowane w czerwcu 2017 r. Zgodnie z międzynarodowymi trendami w przepisach ujęto dwie metody ewaluacji: podstawową metodę RMS i dodatkową metodę VDV. Dla większej przejrzystości metody RMS do nowych polskich przepisów wprowadzono Wskaźnik Odczuwalności Drgań przez Ludzi (WODL). W załączniku do polskiej normy przedstawiono metodę dawki drgań (VDV). Trzecią ważną zmianą w nowej wersji polskiej normy jest sprzęt pomiarowy, który należy wykorzystać w pomiarach oceny odczuwalności drgań człowieka. Nowe przepisy precyzyjnie opisały, jakiego rodzaju sprzęt powinien być używany do rejestracji niskich częstotliwości, do polskiej normy wprowadzono także nowy dysk pomiarowy służący do pomiaru wpływu drgań na ludzi w budynkach.

Słowa kluczowe: narażenie ludzi na drgania, przepisy normowe, metoda RMS, VDV, pomiary

References

[1] Architectural Institute of Japan, Guidelines for the evaluation of habitability to building vibration, AIJ-GEH-2004. 

[2] AS 2670.2. Evaluation of human exposure to whole-body vibration Continuous and shock-induced vibration in buildings (1 to 80 Hz), 1990.

[3] British Standards Institution, BS 6472-1. Guide to evaluation of human exposure to vibration in buildings. Vibration sources other than blasting, 2008.

[4] British Standards Institution, BS 6841. Measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock, 1987.

[5] DIN 4150-2. Structural vibration, Part 2: Human exposure to vibration in buildings, 1999.

[6] International Organization for Standardization, ISO 2631-1. Mechanical vibration and shock: Evaluation of human exposure to whole-body vibration – Part 1: General requirements, 1997.

[7] International Organization for Standardization, ISO 2631-2. (2003) Mechanical vibration and shock – Evaluation of human exposure to whole-body vibration – Part 2: Vibration in buildings (1 Hz to 80 Hz).

[8] International Organization for Standardization, ISO 6897, Guidelines for the evaluation of the response of occupants of fixed structures, especially buildings and off-shore structures, to low frequency horizontal motion (0,063 to 1 Hz), 1984.

[9] International Organization for Standardization, ISO 8041-1. Human response to vibration-measuring instrumentation. Part 1: general purpose vibration meters, 2017.

[10] Kim Y.C., Tamura Y., Tanaka H., Ohtake K., Bandi E.K., Yoshida A., Wind-induced responses of super-tall buildings with various atypical building shapes, J. Wind Eng. Ind. Aerodyn. 133, 2014, 191–199.

[11] Kouroussis G., Verlinden O., Conti C., Contribution of vehicle/track dynamics to the ground vibrations induced by the Brussels tramway, Proceedings of ISMA 2including USD, 2010.

[12] Lee P.J., Lee B.K., Griffin M.J, Evaluation of floor vibrations induced by walking in reinforced concrete buildings, Proc. of Inter Noise Conference, Innsbruck/Austria, 15–18 September 2013, 1–6.

[13] Lombaert G., Degrande G., François S., Thompson D.J., Ground-Borne Vibration due to Railway Traffic: A Review of Excitation Mechanisms, Prediction Methods and Mitigation Measures, [in:] J. Nielsen et al. (eds.), Noise and Vibration Mitigation for Rail Transportation Systems, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 126. Springer, Berlin, Heidelberg 2015.

[14] Ministry of Health of the USSR No. 2957-84, Methodological recommendations regarding the measurement and hygienic assessment of vibrations in residential buildings, 1984.

[15] Papán D., Valašková V., Road and Railway Traffic Seismicity Effect Comparison on Historical Building in Slovakia, IOP Conf. Ser.: Earth Environ. Sci. 44 042017, 2016.

[16] PN-B-02171:1988, Ocena wpływu drgań na ludzi w budynkach, Polish Standard 1988.

[17] PN-B-02171:2017-06, Ocena wpływu drgań na ludzi w budynkach, Polish Standard 2017.

[18] Stypuła K., Stecz P., Chełmecki J., Zgłoszenie patentowe nr W.125639, 29 września 2016.

[19] Tamura Y., Kawana S., Nakamura O., Kanda J., Nakatà S., Evaluation perception of windinduced vibration in buildings, Structures & Buildings, 159, 2006, 1–11.

[20] Tatara T., Pachla F., Kuboń P., Experimental and numerical analysis of an industrial RC tower, Bulletin of Earthquake Engineering, Vol. 15, Iss. 5, 2017, 2149–2171.