The experimental determination of cutting forces in a cutting zone during the orthogonal turning of a GRADE 2 titanium alloy tube

Łukasz Ślusarczyk,

Emilia Franczyk

Abstrakt

This article presents the results of laboratory tests involving the measurement of cutting forces during the orthogonal turning of a tube made of GRADE 2 titanium alloy. The nominal diameter of the turned tube was D = 60 mm, and its wall thickness was 2.77 mm. For research purposes, a Kennametal chisel with an insert marked A3G0500M05P04DF and a holder marked A3SAR2520M0425-075-100 was used. An experimental research plan for variable cutting parameters (f, vc) was developed according to the Taguchi method and statistical analysis of the results was performed using an ANOVA. Three series of tests were performed, one for each of the three different values of tube wall thickness (ap = 2.77, 1.77, 0.5 mm). In accordance with the prepared test plan, nine trials were conducted within each series. Cutting forces were measured during each test with the use of a 3-axis Kisler 9257B piezoelectric dynamometer. DynoWare computer software was used for the archiving and analysis of measurement results.

Keywords: GRADE 2, cutting forces, ANOVA

Streszczenie
Artykuł prezentuje wyniki badań laboratoryjnych pomiaru sił skrawania podczas toczenia ortogonalnego rury z tytanu GRADE 2. Nominalna średnica toczonej rury wynosiła D = 60 mm, natomiast grubość ścianki 2,77 mm. Do badań wykorzystano przecinak firmy Kennametal o oznaczeniu płytki A3G0500M05P04DF, zamontowanej w oprawce A3SAR2520M0425-075-100. Eksperymentalny plan badań dla zmiennych parametrów skrawania (f, vc) opracowano według metody Taguchi, natomiast statystyczne opracowanie wyników wykonano za pomocą analizy ANOVA. W czasie prac zostały przeprowadzone trzy serie prób trzech różnych wartości grubości ścianki rury (ap = 2,77; 1,77; 0,5 mm). W ramach każdej serii zgodnie z opracowanym planem badań wykonano 9 prób. Pomiar sił skrawania był realizowany w każdej próbie za pomocą 3-osiowego siłomierza piezoelektrycznego Kisler 9257B. Do archiwizacji i analizy wyników pomiarów zastosowano program komputerowy DynoWare.

Słowa kluczowe: GRADE 2, siły skrawania, ANOVA
References

[1] Chomsamutr K., Jongprasithporn S., Optimization Parameters of tool life Model Using the Taguchi Approach and Response Surface Methodology, International Journal of Computer Science 9, 1/3, 2012, 120–125.

[2] Ezugwu E.O., Bonney J., Yamane Y., An overview of the machinability of aeroengine alloys, Journal of Materials Processing Technology 134, 2003, 233–253.

[3] Gawlik J., Zębala W., Kształtowanie jakości wyrobów w obróbce precyzyjnej, Mechanik, 2005, 12/2011.

[4] Kramar D., Kopač J., High performance manufacturing aspects of hard-to-machine materials, Adv. Prod. Eng. Manag, 4, 2009, 3–14.

[5] Sha W., Malinov S., Titanium Alloys Modelling of Microstructure. Properties and Applications, Woodhead Publishing, Cornwall 2009.

[6] Słodki B., Zębala W., Struzikiewicz G., Correlation between cutting data selection and chip form in stainless steel turning, Machining Science and Technology 19/2, 2015, 217–235.

[7] Ślusarczyk Ł., Franczyk E., Development and verification of a measuring stand for recording the physical phenomena during turning, Photonics Applications in Astronomy Communications Industry and High-Energy Physics Experiments Book Series, Proceedings of SPIE 10445, 104456G, 2017.

[8] Ślusarczyk Ł., The construction of the milling process simulation models, Photonics Applications in Astronomy Communications Industry and High-Energy Physics Experiments Book Series: Proceedings of SPIE 10031, 100310C, 2016.

[9] Ślusarczyk Ł., Franczyk E., Experimental determination of forces in a cutting zone during turning a stainless steel shaft, Czasopismo Techniczne 5- M/2011.

[10] Yang W.H., Tarng, Y.S., Design optimization of cutting parameters for turning operations based on the Taguchi method, J. Mater. Process. Technol. 84, 1998, 122–129.