An analysis of fast-changing phenomena in the cutting zone during the turning of a TI-6AL-4V titanium alloy shaft

Łukasz Ślusarczyk,

Emilia Franczyk

Abstrakt

This paper presents an experimental method of determining the velocity of chip flow on the rake surface of a cutting insert during the longitudinal turning of Ti-6Al-4V titanium alloy. A Seco CNMG120408-M1 833 carbide cutting insert without a protective coating was used for the purposes of research. In order to record phenomena in the cutting zone, a PHANTOM V5.2 high-speed camera was used and placed above the area of machining. The camera recorded the process at a speed of 3000 fps. Placing the camera near the cutting zone allowed recording the process of chip formation and its flow along the rake face of the insert. Trials of longitudinal turning were performed in accordance with the test plan, where vc and f were the independent variables. In addition, the tests were performed for two different cutting depths. Processing and analysis of the obtained video sequences were performed with the use of CineViewer 663 and Tracker computer applications. Experimental determination of the velocity of chip flow at the rake face of a cutting insert was conducted by analysing the movement of the characteristic point on the outside side of the chip. Analysis of variance for the obtained results was performed using ANOVA and the regression functions were determined.

Keywords: Ti-6Al-4V, fast-changing phenomena, ANOVA

Streszczenie
W artykule przedstawiono eksperymentalny sposób wyznaczania prędkości spływu wióra po powierzchni natarcia płytki skrawającej podczas toczenia wzdłużnego stopu tytanu Ti-6Al-4V. W ramach badań wykorzystano płytkę skrawającą z węglika spiekanego, bez powłoki ochronnej, Seco CNMG120408-M1 833. Do rejestracji zjawisk w strefie skrawania zastosowano kamerę szybkoklatkową PHANTOM V5.2 umieszczoną nad strefą obróbki. Szybkość rejestracji kamery wynosiła 3000 kl/s. Ustawienie kamery w tym miejscu umożliwiało rejestrację procesu powstawania i spływu wióra po powierzchni natarcia płytki. Próby toczenia wzdłużnego realizowano zgodnie z przyjętym planem badań, gdzie zmiennymi niezależnymi były vc i f. Dodatkowo próby wykonano dla dwóch różnych głębokości skrawania. Obróbkę i analizę otrzymanych sekwencji wideo przeprowadzono w aplikacjach komputerowych CineViewer 663 oraz Tracker. Eksperymentalne wyznaczenia prędkości spływu wióra na powierzchni natarcia płytki skrawającej realizowano przez analizę ruchu punktu charakterystycznego na zewnętrznej stronie wióra. Dla uzyskanych wyników przeprowadzono analizę wariancji ANOVA i wyznaczono funkcje regresji.

Słowa kluczowe: Ti-6Al-4V, zjawiska szybkozmienne, ANOVA
References

[1] Benardos P.G., Vosniakos G.C., Predicting surface roughness in machining: a review, International Journal of Machine Tools and Manufacture 43(8), 2003, 833–844.

[2] Chauvy P.F., Madore C., Landolt D., Variable length scale analysis of surface topography: characterization of titanium surfaces for biomedical applications, Surface and Coatings Technology 110, 1998, 48–56.

[3] Davies M.A., Chou Y., Evans C.J., On Chip Morphology, Tool Wear and Cutting Mechanics in Finish Hard Turning, CIRP Annals – Manufacturing Technology 45(1), 1996, 77–82.

[4] Haglund A.J., Kishawy H.A., Rogers R.J., An Exploration of Friction Models for the Chip-Tool Interface Using an Arbitrary Lagrangian–Eulerian Finite Element Model, Wear 265, 452–460 (2008).

[5] Shamoto E., Aoki T., Sencer B., Suzuki N., Hino R., Koide T., Control of chip flow with guide grooves for continuous chip disposal and chip-pulling turning, CIRP Annals – Manufacturing Technology 60(1), 2011, 125–128.

[6] Shaw M.C., Vyas A., The Mechanism of Chip Formation with Hard Turning Steel, CIRP Annals – Manufacturing Technology 47(1), 1998, 77–82.

[7] Słodki B., Struzikiewicz G., Ślusarczyk L., Influence of cutting fluid conditions and cutting parameters on the chip form in turning of titanium and steel alloys, Key Engineering Materials 686, 2016, 74–79.

[8] Struzikiewicz G., The application of high-speed camera for analysis of chip creation process during the steel turning, Proc. of SPIE 10031, 2016, 1–8.

[9] Struzikiewicz G., Zębla W., Rumian K., Application of Taguchi method to optimization of cutting force and temperature during turning of difficult to cut materials, Key Engineering Materials 686, 2016, 114–118.

[10] Ślusarczyk Ł., Franczyk E., Development and verification of a measuring stand for  recording the physical phenomena during turning, Photonics Applications in Astronomy Communications Industry and High-Energy Physics Experiments Book Proc. of SPIE 10445, 104456G, 2017.

[11] Ślusarczyk Ł., Franczyk E., Experimental determination of forces in a cutting zone during turning a stainless steel shaft, Czasopismo Techniczne 5-M/2018.