A method for the automatic creation of bidirectional transportation paths for AGVs in Delmia QUEST

Waldemar Małopolski

Abstrakt

In this paper, a method for the automatic creation of bidirectional paths for AGVs in the Delmia QUEST software application is presented. The layout of transportation subsystem can be prepared in a spreadsheet. Based on it the file with input data is generated. Using programming languages included in QUEST, procedures were created and based on these procedures, a macro was built. This macro allows reading input data from the file and creates the transportation paths automatically. This enables the simulation model building to be less time consuming.

Streszczenie
W artykule przedstawiono metodę automatycznego generowania dwukierunkowych dróg transportowych w programie Delmia QUEST dla autonomicznie sterowanych robotów mobilnych. Układ i rozmieszczenie dróg transportowych są projektowane w arkuszu kalkulacyjnym, a następnie zapisane jako dane wejściowe w postaci pliku tekstowego. Wykorzystując języki programowania zawarte w programie QUEST, opracowano odpowiednie procedury. Zostały one następnie wykorzystane do budowy macro, które wczytuje dane z pliku i w automatyczny sposób generuje całą sieć dróg transportowych. Dzięki temu budowanie modelu symulacyjnego może być uproszczone i przyspieszone.

Słowa kluczowe: modelling, simulation, bidirectional paths, AGV, Delmia QUEST, modelowanie, symulacja, dwukierunkowe drogi, roboty mobilne
References

[1] Zając J., Chwajoł G., Więk T., Krupa K., Małopolski W., Słota A., Automated Guided Vehicle System for Work-in-Process Movement, Solid State Phenom., Vol. 196, 2013, pp. 181–188.

[2] Zając J., A deadlock handling method for automated manufacturing systems, CIRP Ann. Manuf. Technol., Vol. 53, Issue 1, 2004, pp. 367–370.

[3] Akturk M.S., Yilmaz H., Scheduling of automated guided vehicles in a decision making hierarchy, Int. J. Prod. Res., Vol. 34, No. 2, 1996, pp. 577–591.

[4] Bocewicz G., Banaszak Z., Declarative approach to cyclic steady state space refinement: periodic process scheduling, Int. J. Adv. Manuf. Tech., Vol. 67, 2013, pp. 137–155.

[5] Liu S., Gruver W., Kotak D., Bardi S., Holonic manufacturing system for distributed control of automated guided vehicles, 2000 IEEE International Conference on Systems, Man and Cyberbetics, 2000, pp. 1727–1732.

[6] Ando M., Nishi T., Konishi M., Imai J., Autonomous decentralized route planning method and its application to a dynamic route planning, 2003 IEEE International Symposium on  Computational Intelligence in Robotics and Automation, 2003, pp. 718–723.

[7] Bocewicz G., Nielsen I., Banaszak Z., Automated guided vehicles fleet match-up scheduling with production flow constraints, Eng Appl Artif Intell., Vol. 30, 2014, pp. 49–62.

[8] Reveliotis S., Roszkowska E., Conflict resolution in multi-vehicle systems: A resource allocation paradigm, 4th IEEE Conference on Automation Science and Engineering, 2008, pp. 115–121

 [9] Roszkowska E., Provably correct closed-loop control for multiple mobile robot systems, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2015, pp. 2810–2815.

[10] Sakakibara K., Fukui Y., Nishikawa I., Genetics-Based Machine Learning Approach for Rule Acquisition in an AGV Transportation System, 2008 Eighth International Conference on Intelligent Systems Design and Applications, Vol. 3, 2008, pp. 115–120.

[11] Moore P., Ujvari S., Pu J., Lundgren J.-O., Xie C., Intelligent semi-autonomous vehicles in materials handling, Mechatronics, Vol. 9, 1999, pp. 881–892.

[12] Wang C., Qiu C., Virtual simulation of the job shop scheduling system based on delmia/QUEST, 7th Intl. Conf. on Sys. Simulation and Scientific Computing, 2008, pp. 1129–1132.

[13] Manesh H.F., Schaefer D., Hashemipour M., Information requirements analysis for holonic manufacturing systems in a virtual environment, Int. J. Adv. Manuf. Tech., Vol. 53, 2011, pp. 385–398.

[14] Guan Z., Cao L., Wang Ch.J., Cui Y., Shao X., Simulation of Logistics System with Aspect of Pallet Requirements Optimization Based on Digital Factory, Advances in Automation and Robotics, Vol. 1, 2011 International Conference on Automation and Robotics (ICAR 2011), 2011, pp. 293–302.

[15] Du J., He Q., Fan X., Automating generation of the assembly line models in aircraft manufacturing simulation, 2013 IEEE International Symposium on Assembly and Manufacturing (ISAM), 2013, pp. 155–159.

[16] Lu R.F., Qiao G., Riddick F.H., McLean C., NIST XML simulation interface specification at Boeing: a case study, 2003 International Conference on Machine Learning and Cybernetics, Vol. 2, 2003, pp. 1230–1237.

[17] Han K.H., Bae S.M., Choi S.H., Lee G., Jeong D.M., Parametric layout design and simulation of flexible manufacturing system, Recent Researches in Power Systems and Systems Science, 2011, pp. 94–99.

[18] Fournier J., Model building with core manufacturing simulation data, 2011 Winter Simulation Conference, 2011, pp. 2219–2227.

[19] Lee J., Kang H.S., Noh S.D., Simulation-based analysis for sustainability of manufacturing system, Int. J. Pr. Eng. Man-Gt., Vol. 13, No. 7, 2012, pp. 1221–1230.