The impact of the orientation error of scans to the change of the length of the  component of situation error in the cloud of points

Rafał Gawałkiewicz

Abstrakt

Wpływ błędu orientacji skanów na zmianę długości jako składowej błędu położenia punktu w chmurze

W chwili obecnej rynek sprzętu geodezyjnego uzupełniła bardzo liczna grupa instrumentów skanujących, które wykorzystuje się masowo z racji ograniczenia do minimum roli użytkownika oraz szybkości i ilości danych we wszelkiego rodzaju pracach inwentaryzacyjnych oraz monitoringu geodezyjnym na całym świecie. Także w Polsce nowe przepisy geodezyjne określają warunki stosowalności tego typu zestawów pomiarowych w podstawowych pracach służb geodezyjnych. Dziś odpowiednio przetworzone dane mogą stanowić element zasobu geodezyjnego. Powszechność stosowania skaningu laserowego w pracach inwentaryzacyjnych ogromnej liczby obiektów powierzchniowych i podziemnych, często o skomplikowanej geometrii i trudnodostępnych oraz braku możliwości realizacji pomiaru według przyjętych powszechnie zasad, wymusza szukanie optymalnych rozwiązań pomiarowych gwarantujących wykonanie roboty z należytą dokładnością. Szereg prowadzonych na świecie przez placówki naukowo – badawcze szczegółowych testów technologii geodezyjnych, pozwala wnioskować o możliwości zastosowania ich w określonej sytuacji terenowej lub geometrii obiektu. W artykule przeanalizowano przydatność i dokładność dotychczas stosowanych do transformacji chmur punktów sygnałów referencyjnych oraz wpływ niedokładności rozpoznania środka sygnału (jako procesu w pełni automatycznego) na wielkość skręcenia skanu oraz zmianę wartości mierzonej długości z tytułu skręcenia płaszczyzny odbijającej.

Abstract

At present, the market of geodetic equipment was enriched by the large group of scanning instruments, which are massively used in the process of inventory and monitoring of various engineering constructions. There is more and more interest in this type of technology, because it is limiting the role of users, speeding up the measurement and allows higher amount of data that can be used in the individual stand. In Poland, new geodetic regulations defi ne the conditions of applying this type of measurement sets in basic works of geodetic services. Nowadays, properly processed data can make the element of geodetic resource. It is common to apply laser scanning in inventory for a very large number of objects on the surface and underground. These objects have often a complicated geometry and are difficult to reach, so there are no possibilities to carry out the measurement, according to commonly accepted principles, looking for optimal measurement solutions guaranteeing adequate accuracy. The results of detail tests of geodetic technologies (carried out worldwide by the scientific and research centres), allow the conclusions about the possibility to apply them in a specific field situation or specific geometry of the object. In the article, the usefulness and accuracy of reference signals applied in the transformation of the clouds of reference signals point and the impact of the inaccuracy in recognizing the centre of the signal (as fully automatic process) to the value of the scan rotation and the change of values of the measured length due to the title of twisting the reflecting plane.

Keywords: laser scanning, reference signals, positioning geodetic instruments

Słowa kluczowe: skaning laserowy, sygnały referencyjne, pozycjonowanie instrumentów geodezyjnych
References

Alkan R.M., Karsidag G., (2012): Analysis of The Accuracy of Terrestrial Laser Scanning Measurement. FIG Working Week – Knowing to manage the territory, protect the environment, evaluate the cultural heritage, Rome, Italy 6–10 May 2012, pp. 1–16

Andriuskeviciute I. (2010): Comparison of Short Range and Long Range Laser Scanner’s Accuracy Diff erences. Gjøvik University College. Bachelor Project 2010

Gawałkiewicz R., (2006): Nowoczesne technologie geodezyjne w inwentaryzacji wielkokubaturowych obiektów podziemnych. Ph.D. Thesis, unpublished, supervised by Prof. Jacek Szewczyk, AGH-UST Kraków

Hess K., Bienert A., Hardtle W., von Oheimb G., (2015): Does Tree Architectural Complexity Infl uence the Accuracy of Wood Volume Estimates of Single Young Trees by Terrestrial Laser Scanning?. Forests, vol. 6, 3847–3867; doi:10.3390/ f6113847

Jagielski A., (2007): Geodezja II. Edition II, modifi ed, Wydawnictwo Geodpis, Kraków

Kersten Th., Sternberg H., Mechelke K., Acevedo Pardo C., (2004): Terrestrial laser scanning system Mensi GS100/ GS200 – accuracy tests, experiences and projects at the Hamburg University of applied sciences. Panoramic Photogrammetry Workshop 2004, organised by TU Dresden, University of Stuttgart and ISPRS WG V/1

Lazzarini T., Hermanowski A., Gaździcki J., Dobrzycka M., Laudyn I.,(1990): Geodezja – Geodezyjna Osnowa Szczegółowa. Państwowe Przedsiębiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera, Warszawa–Wrocław Lenda G., Marmol U., (2010): Dokładność dalmierzy bezzwierciadlanych dla pomiarów obiektów wykonanych z materiałów syntetycznych. PAK vol. 56, nr 2, pp. 1280–1286

Lichti D.D., (2006): Error modelling, calibration and analysis of an AM-CW terrestrial laser scanner system, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 61, pp. 307–324

Lichti D., Stewart M., Sakiri M., Snow A., (2001): Benchmark tests on a Tree-dimensional Laser Scanning System. School of Spatial Sciences Curtin University of Technology, Perth–West Australia

Maciaszek J., Gawałkiewicz R., Dudek R., (2004): Laser scanning – a 21st century technology. Materiały konferencyjne Konferencji Naukowo–Technicznej, Chiny

Maciaszek J., Gawałkiewicz R., (2007a): Examining the accuracy of laser scanning in laboratory and fi eld conditions, ISM XIII International Congress of the International Society for Mine Surveying, Budapest–Hungary 24–28 September 2007

Maciaszek J., Gawałkiewicz R., (2007b): Badanie dokładności tachimetrów i skanerów laserowych w warunkach laboratoryjnych i polowych, Materiały konferencyjne IX Dni Miernictwa Górniczego i Ochrony Terenów Górniczych, Zeszyty Naukowe Politechniki Śląskiej, nr 1752, Górnictwo, z. 278, p. 241–258, 20–22 czerwca 2007 Wisła, Wydawnictwo Politechniki Śląskiej

Maciaszek J., Gawałkiewicz R., Szafarczyk A., (2015): Geodezyjne metody badania osuwisk. Monografi a, Wydawnictwa Naukowo–Dydaktyczne AGH, Kraków

Pawłowski W., Abbas S., (2009): Pomiary geodezyjne na potrzeby budownictwa w ujęciu standardów ISO. Zeszyty Naukowe Politechniki Łódzkiej Budownictwo zeszyt 60, nr 1052

Pielok J., Cisło B., Gawałkiewicz R., Jaśkowski W., Jura J., Lipecki T., Skulich M., Szafarczyk A., Szewczyk J., (2011): Geodezja Górnicza. Podręcznik pod redakcją naukową prof. dr hab. inż. Jana Pieloka, Wydawnictwa AGH, Kraków

Romik G., (2011): Geodezyjny monitoring obiektów inżynierskich programem Trimble 4D Control na przykładzie budowy Galerii Katowickiej w rejonie dworca kolejowego Katowice Osobowa w Katowicach. Praca dyplomowa niepublikowana pod kierunkiem dr inż. Rafała Gawałkiewicza, AGH Kraków Tsakiri M., Pagounis V.,

Arabatzi O., (2015): Evaluation of a pulsed terrestrial laser scanner based on ISO standards. Surface Topography: Metrology and Properties, vol. 3, no . 1