Uwarunkowania termiczne tworzenia się i utrzymywania pokrywy lodowej na Noteci

Renata Graf

Abstrakt

Thermal conditions of the formation and persistence of ice cover on the River Noteć

The article presents the results of an analysis of the impact of cumulated series of negative air temperatures (cumulated degree-days) on the formation and persistence of the permanent ice cover on the River Noteć in the period 1987–2013. When assessing ice phenomena, use was made of observations conducted over 24-hour periods at four IMGW-PIB stations located along the River Noteć: Pakość (upper section), Ujście and Krzyż Wielkopolski (middle section) and Nowe Drezdenko (lower section). The authors determined the nature of the distribution of negative series and 24-hour air temperatures in terms of their duration, increase and distribution in years and months, using data from the Piła meteorological station. The primary objective was to specify the threshold values of cumulated degree-days at which the permanent ice cover starts to appear on the river, and the conditions under which this phenomenon is accelerated. When determining the strength of the relation between cumulated degree-days and the probability of appearance of an ice cover, use was made of the logistic regression model. Research showed that in the majority of instances ice cover appeared on the river at values of cumulated degree-days greater than: –16°C in Pakość, –21°C in Ujście and Krzyż Wielkopolski, and –73.5°C in Nowe Drezdenko. During the analysed period, 306 negative air temperature series occurred in the studief catchment area, with those lasting 5–10 days (76 of all instances) being predominant. As regards the River Noteć in Pakość, the logistic regression model confirmed that, on average, a one-degree increase in the value of cumulated degree-days is associated with an increase in the probability of  appearance of the permanent ice cover of approximately 2.10%, of approximately 1.17% in Ujście, of 2.72% in Krzyż Wielkopolski, and of approximately 5.70% in Nowe Drezdenko. The more rapid the increase in cumulated series of negative air temperatures, the greater the probability of ice cover appearing and persisting on the River Noteć. The  analysis pointed to the usefulness of the cumulated degree-days factor for predicting the appearance of ice cover on the river. The results obtained are significant for maintaining the economic and ecological function of the River Noteć. Information about the icing of the river has a practical dimension, among others as concerns identifying and minimising hazards connected with the occurrence of jams and ice-jam floods, which bring about enormous economic losses and constitute a threat to human life.

Słowa kluczowe: ice cover, air temperature, cumulated degree-days factor, logistic regression method, the River Noteć
References

Agafonova S.A., Frolova N.L., 2007, Features of ice regime of Northern Dvina rivers’ basin, Water Resources Journal, 34 (2), 123–131.

Bączyk A., Suchożebrski J., 2016, Zmienność przebiegu zjawisk lodowych na Bugu w latach 1903–2012, Inżynieria Ekologiczna, 49, 136–142.

Beltaos S., Prowse T., 2009, River-ice hydrology in a shrinking cryosphere, Hydrological Processes, 23, 122–144, doi: 10.1002/hyp.7165.

Biecek P., 2008, Przewodnik po pakiecie R, Oficyna Wydawnicza GiS, s.c., Wrocław, http://www.gis.wroc.pl (25.03.2017).

Borowicz J., 2016, Charakterystyka zjawisk lodowych na Noteci i jej prawobrzeżnych dopływach w latach 1982–2011, Archiwum Prac Dyplomowych, UAM Poznań.

Boryczka J., Stopa-Boryczka M., 2004, Cykliczne wahania temperatury powietrza i opadów w Polsce w XIX i XXI wieku, Acta Agrophysica, 3 (1), 21–33.

Caissie D., 2006, The thermal regime of rivers: a review, Freshwater Biology, 51, 1389–1406.

Caissie D., St-Hilaire A., El-Jabi N., 2004, Prediction of water temperatures using regression and stochastic models, [w:] 57th Canadian Water Resources Association Annual Congress, Montreal, QC, June 16–18, 2004, Canadian Water Resources Association, Ottawa, Ontario.

Cheng B., Vihma T., Launiainen J., 2003, Modelling of the superimposed ice formation and sub-surface melting in the Baltic Sea, Geophysica, 39, 31–50.

Ćmielewski M., 2011, Zmienność zlodzenia rzek półkuli północnej w XX wieku, [w:] B. Pawłowski (red.), II Warsztaty: Lodowe problemy rzek. Zatory i wezbrania zatorowe, Streszczenia referatów, 3–4 lutego 2011, Dobiegniewo, 16–17.

Ćmielewski M., Grześ M., 2010, Wieloletnia zmienność zlodzenia Wisły w Toruniu i Niemna w Smolnikach w XIX i XX wieku, Gospodarka Wodna, 3, 112–115.

Cowx I., 2000, Innovations in Fish Passage Technology, Fisheries Management and Ecology, 7, 471–472, doi: 10.1046/j.1365-2400.2000.00229.x.

Das A., Sagin J., Van der Sanden J., Evans E., McKay K., Lindenschmidt K.E., 2015, Monitoring the freeze-up and ice cover progression of the Slave River, Canadian Journal of Civil Engineering, 42, 609–621.

Dyrektywa 2000/60/WE Parlamentu Europejskiego i Rady z dnia 23 października 2000 r. ustanawiająca ramy wspólnotowego działania w dziedzinie polityki wodnej; Dz. Urz. WE L 327 z 22.12.2000, z późn. zm, http://www.rdw.kzgw.gov.pl/pl/planowanie (25.03.2017).

EEA Report No. 12/2012, Climate change, impacts and vulnerability in Europe 2012en, http://www.eea.europa.eu/pl/themes (15.02.2017).

ETC/ICM, 2015, European Freshwater Ecosystem Assessment: Cross walk between the Water Framework Directive and Habitats Directive types, status and pressures, ETC/ICM Technical Report 2/2015, Magdeburg: European Topic Centre on inland, coastal and marine waters, http://icm.eionet.europa.eu/ETC_Reports /FreshwaterEcosystemAssessmentReport_201509 (25.03.2017).

Faraway J.J., 2006, Extending the Linear Model with R. Generalized Linear, Mixed Effects and Nonparametric Regression Models, Chapman & Hall/CRC Texts in Statistical Science.

Frauenfeld O.W., Zhang T., McCreight J.L., 2007, Northern hemisphere freezing/thawing index variations over the twentieth century, International Journal of Climatology, 27, 47–63, http://dx.doi.org/10.1002/joc.1372.

Gorączko M., 2013, Zmienność przebiegu zjawisk lodowych na Wiśle w rejonie Bydgoszczy, Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, 62, 382–388.

Gorączko M., Pawłowski B., 2014, Przebieg zjawisk lodowych na Warcie w rejonie Uniejowa, Biuletyn Uniejowski, 3, 23–33.

Graf R., 2015, Zmiany termiki wód Warty w profilu łączącym pradolinny i przełomowy odcinek doliny (Nowa Wieś Podgórna – Śrem – Poznań), [w:] D. Absalon, M. Matysik, M. Ruman (red.), Monografie Komisji Hydrologicznej PTG, Nowoczesne metody i rozwiązania w hydrologii i gospodarce wodnej, Komisja Hydrologiczna PTG, PTG Oddział Katowice, 177–194.

Johnson S.L., Jones J.A., 2000, Stream temperature response to forest harvest and debris flows in western Cascades, Oregon, Canadian Journal of Fisheries and Aquatic Sciences, 57 (Suppl. 2), 30–39.

Kanno Y., Vokoun J.C., Letcher B.H., 2014, Paired stream–air temperature measurements reveal fine-scale thermal heterogeneity within headwater brook trout stream networks, River Research and Application, 30, 745–755, doi: 10.1002/rra.2677.

Klavins M., Briede A., Rodinovs V., 2007, Ice regime of rivers in Latvia in relation to climatic variability and North Atlantic oscillation, [w:] M. Klavins (red.), Climate change in Latvia, Univesity of Latvia, Riga, 58–72.

Kondracki J., 2008, Geografia regionalna Polski, PWN, Warszawa.

Kornaś M., 2014, Ice phenomena in the Warta River in Poznań in 1961–2010, Quaestiones Geographicae, 33 (1), 51–59.

Kożuchowski K., Żmudzka E., 2001, Ocieplenie w Polsce: skala i rozkład sezonowy zmian temperatury w drugiej połowie XX w., Przegląd Geofizyczny, 46 (1–2), 81–90.

Kreft A., 2013, Problemy lodowe ujściowego odcinka Odry, Gospodarka Wodna, 6, 1–4.

Kubiak-Wójcicka K., Kornaś M., 2015, Impact of hydrotechnical structures on hydrological regime of the Gwda and Drawa rivers, Quaestiones Geographicae, 34 (1), 99–110.

Kuusisto E., Elo A.R., 1998, Lake and river ice variables as climate indicators in Northern Europe, Internationale Vereinigung fur Theoretische und Angewandte Limnologie: Verhandlungen, 2761–2764.

Langan S.J., Johnston L., Donaghy M.J., Youngson A.F., Hay D.W., Soulsby C., 2001, Variation in river water temperatures in an upland stream over a 30-year period, The Science of the Total Environment, 265, 195–207.

Łaszewski M., Jeleński P., 2013, Porównanie warunków termicznych wód rzek Raby i Świdra, Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, 61, 239–248.

Lindenschmidt K.E., Sydor M., Carson R.W., Harrison R., 2012, Ice jam modelling of the Lower Red River, Journal of Water Resource and Protection, 4, 1–11.

Livingstone D.M., 1997, Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperatures, Climatic Change, 37, 407–439.

Lowney C.L., 2000, Stream temperature variation in regulated rivers: evidence for a spatial pattern in daily minimum and maximum magnitudes, Water Resources Research, 36, 2947–2955.

Łukaszewicz J.T., 2017, Przebieg i charakter zjawisk lodowych na wybranych odcinkach rzek Przymorza o wysokim stopniu antropopresji na tle zmian klimatycznych zachodzących w strefie brzegowej Bałtyku, Acta Scientiarum Polonorum Architectura, 16 (1), 93–113.

Magnuson J.J., Robertson D., Benson B., Wynne R., Livingstone D., Arai T., Assel R., Barry R., Card V., Kuusisto E., Granin N., Prowse T., Steward K., Vuglinski V., 2000, Historical trends in lake and river ice cover in the northern hemisphere, Science, 289, 1743–1746.

Majewski W., 2009, Przepływ w kanałach otwartych z uwzględnieniem zjawisk lodowych, IMGW- PIB, Warszawa.

Majewski W., Mroziński Ł., 2010, Zjawiska lodowe na dolnej Wiśle, Gospodarka Wodna, 1, 18–22.

Michalska B., 2011, Tendencje zmian temperatury powietrza w Polsce, Prace i Studia Geograficzne, 47, 67–75.

Mroziński Ł., 2006, Wieloletnia zmienność zlodzenia Dolnej Wisły, Gazeta Obserwatora IMGW, 2, 28–31.

Pawłowski B., 2008, Wieloletnia zmienność przebiegu zjawisk lodowych na Wiśle w Toruniu, Gospodarka Wodna, 2, 49–53.

Pawłowski B., 2015, Determinants of change in the duration of ice phenomena on the Vistula River in Toruń, Journal of Hydrology and Hydromechanics, 63 (2), 145–153.

Pawłowski B., Gorączko M., Szczerbińska A., 2017, Zjawiska lodowe na rzekach Polski, [w:] P. Jokiel, W. Marszelewski, J. Pociask-Karteczka (red.), Hydrologia Polski, PWN, Warszawa, 195–200.

Poole C., Berman C.H., 2001, An ecological perspective on in-stream temperature: Natural heat dynamics and mechanisms of human-caused thermal degradation, Environmental Management, 27 (6), 787–802.

Prowse T.D., Bonsal B.R., Duguay C.R., Hessen D.O., Vuglinsky V.S., 2007, River and lake ice. Global outlook for ice & snow, United Nations Environment Programme.

Ptak M., Choiński A., 2016, Ice phenomena in rivers of the coastal zone (Southern Baltic) in the years 1956–2015, Baltic Coastal Zone, Journal of Ecology and Protection of the Coastline,20, 73–83.

R Core Team, 2013, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org (15.02.2017).

Ruosteenoja K., 1986, The date of break-up of lake ice as a climatic index, Geophysica, 22, 89–99.

Sinokrot B.A., Stefan H.G., 1994, Stream water-temperature sensitivity to weather and bed parameters, Journal of Hydraulics Engineering, 120 (6), 722–736.

Snyder C., Hitt N., Young J., 2015, Accounting for groundwater in stream fish thermal habitat responses to climate change, Ecological Applications, 25, 1397–1419, doi: 10.1890/14-1354.1.

Tague C., Farrell M., Grant G., Lewis S., Rey S., 2007, Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon, Hydrological Processes, 21, 3288–300.

Toffolon M., Siviglia A., Zolezzi G., 2010, Thermal wave dynamics in rivers affected by hydropeaking, Water Resources Research, 46, W08536.

Webb B.W., Clack P.D., Walling D.E., 2003, Water–air temperature relationships in a Devon River system and the role of flow, Hydrological Processes, 17, 3069–3084.

Webb B.W., Nobilis F., 2007, Long-term changes in river temperature and the influence of climatic and hydrological factors, Hydrological Sciences, 52, 74–85.

Westhoff J.T., Paukert C.P., 2014, Climate change simulations predict altered biotic response in a thermally heterogeneous stream system, PLoS ONE, 9 (10), e111438, doi: 10.1371/journal.pone.0111438.

Wiejaczka Ł., 2007, Relacje pomiędzy temperaturą wody w rzece a temperaturą powietrza (na przykładzie rzeki Ropy), Folia Geographica, ser. Geographica-Physica, 37–38, 95–105.

Woś A., 2010, Klimat Polski w drugiej połowie XX wieku, Wydawnictwo Naukowe UAM, Poznań.

Wrzesiński D., Perz A., 2016, Cechy reżimu odpływu rzek w zlewni Warty, Badania Fizjograficzne, R. VII – Seria A – Geografia Fizyczna (A67), 289–304, doi: 10.14746/bfg.2016.7.21.

Yoo J., D’Odorico P., 2002, Trends and fluctuations in the dates of ice break-up of lakes and rivers in Northern Europe: the effect of the North Atlantic, Journal of Hydrology, 268 (1–4), 100–112.

Younus M., Hondzo M., Engel B.A., 2000, Stream temperature dynamics in upland agricultural watersheds, Journal of Environmental Engineering, 126, 518–526.

Zhang F., Mosaffa M., Chu T., Lindenschmidt K.E., 2017, Using remote sensing data to parameterize ice jam modeling for a Northern Inland Delta, Water, 9 (5), 306, doi: 10.3390/w9050306.

Czasopismo ukazuje się w sposób ciągły on-line

Pierwotną wersją czasopisma jest wersja elektroniczna publikowana w internecie