Andrzej ROSLANOWSKI and Saharon SHELAH

BOREL SETS WITHOUT PERFECTLY MANY OVERLAPPING TRANSLATIONS

Abstract. We study the existence of Borel sets $B \subseteq \omega^2$ admitting a sequence $\langle \eta_\alpha : \alpha < \lambda \rangle$ of distinct elements of ω^2 such that $| (\eta_\alpha + B) \cap (\eta_\beta + B) | \geq 6$ for all $\alpha, \beta < \lambda$ but with no perfect set of such η’s. Our result implies that under the Martin Axiom, if $\aleph_\alpha < \mathfrak{c}$, $\alpha < \omega_1$ and $3 \leq \iota < \omega$, then there exists a Σ^0_2 set $B \subseteq \omega^2$ which has \aleph_α many pairwise 2ι–nondisjoint translations but not a perfect set of such translations. Our arguments closely follow Shelah [7, Section 1].

1. Introduction

Shelah [7] analyzed the question whether there are Borel sets in the plane which contain large squares but no perfect squares. A rank on models with...
a countable vocabulary was introduced and was used to define a cardinal \(\lambda_{\omega_1} \) (the first \(\lambda \) such that there is no model with universe \(\lambda \), countable vocabulary and rank \(< \omega_1 \)). It was shown in [7, Claim 1.12] that every Borel set \(B \subseteq \omega_2 \times \omega_2 \) which contains a \(\lambda_{\omega_1} \)-square must contain a perfect square. On the other hand, by [7, Theorem 1.13], if \(\mu = \mu^{\aleph_0} < \lambda_{\omega_1} \) then some ccc forcing notion forces that (the continuum is arbitrarily large and) some Borel set contains a \(\mu \)-square but no \(\mu^+ \)-square.

We would like to understand what the results mentioned above mean for general relations. Natural first step is to ask about Borel sets with \(\mu \geq \aleph_1 \) pairwise disjoint translations but without any perfect set of such translations, as motivated e.g. by Balcerzak, Roslanowski and Shelah [1] (we studied the \(\sigma \)-ideal of subsets of \(\omega_2 \) generated by Borel sets with a perfect set of pairwise disjoint translations) or Elekes and Keleti [3] (see Question 4.5 there). A generalization of this direction could follow Zakrzewski [8] who introduced perfectly \(k \)-small sets.

However, preliminary analysis of the problem revealed that another, somewhat orthogonal to the one described above, direction is more natural in the setting of [7]. Thus we investigate Borel sets with many, but not too many, pairwise overlapping intersections.

Easily, every uncountable Borel subset \(B \) of \(\omega_2 \) has a perfect set of pairwise non-disjoint translations (just consider a perfect set \(P \subseteq B \) and note that for \(x, y \in P \) we have \(0, x+y \in (B+x) \cap (B+y) \)). The problem of many non-disjoint translations becomes more interesting if we demand that the intersections have more elements. Note that in \(\omega_2 \), if \(x+b_0 = y + b_1 \) then also \(x+b_1 = y + b_0 \), so \(x \neq y \) and \(|(B+x) \cap (B+y)| < \omega \) imply that \(|(B+x) \cap (B+y)| \) is even.

In the present paper we study the case when the intersections \((B+x) \cap (B+y) \) have at least 6 elements. We show that for \(\lambda < \lambda_{\omega_1} \) there is a ccc forcing notion \(P \) adding a \(\Sigma^0_2 \) subset \(B \) of the Cantor space \(\omega_2 \) such that

- for some \(H \subseteq \omega_2 \) of size \(\lambda \), \(|(B+h) \cap (B+h')| \geq 6 \) for all \(h, h' \in H \), but

- for every perfect set \(P \subseteq \omega_2 \) there are \(x, x' \in P \) with \(|(B+x) \cap (B+x')| < 6 \).

We fully utilize the algebraic properties of \((\omega_2, +) \), in particular the fact that all elements of \(\omega_2 \) are self-inverse.
In Section 2 of the paper we recall the rank from [7]. We give the relevant definitions, state and prove all the properties needed for our results later. In the third section we analyze when a Σ^0_2 subset of ω^2 has a perfect set of pairwise overlapping translations. The main consistency result concerning adding a Borel set with no perfect set of overlapping translations is given in the fourth section.

Notation. Our notation is rather standard and compatible with that of classical textbooks (like Jech [4] or Bartoszyński and Judah [2]). However, in forcing we keep the older convention that a stronger condition is the larger one.

1. For a set u we let
 \[u^{(2)} = \{(x, y) \in u \times u : x \neq y\}. \]

2. The Cantor space ω^2 of all infinite sequences with values 0 and 1 is equipped with the natural product topology and the group operation of coordinate-wise addition $+$ modulo 2.

3. Ordinal numbers will be denoted be the lower case initial letters of the Greek alphabet $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta$ as well as ξ. Finite ordinals (non-negative integers) will be denoted by letters $a, b, c, d, i, j, k, \ell, m, n, M$ and ι.

4. The Greek letters κ, λ will stand for uncountable cardinals.

5. For a forcing notion \mathbb{P}, all \mathbb{P}-names for objects in the extension via \mathbb{P} will be denoted with a tilde below (e.g., $\tilde{\tau}, \tilde{X}$), and $\dot{G}_{\mathbb{P}}$ will stand for the canonical \mathbb{P}-name for the generic filter in \mathbb{P}.

2. The rank

We will remind some basic facts from [7, Section 1] concerning a rank (on models with countable vocabulary) which will be used in the construction of a forcing notion in the fourth section. For the convenience of the reader we provide proofs for most of the claims, even though they were given in [7]. Our rank rk is the rk^0 of [7] and rk^* is the rk^2 there.

In the setting of [7]. Thus we investigate Borel sets with many, but not too somewhat orthogonal to the one described above, direction is more natural
Let \(\lambda \) be a cardinal and \(\mathcal{M} \) be a model with the universe \(\lambda \) and a countable vocabulary \(\tau \).

Definition 2.1. 1. By induction on ordinals \(\delta \), for finite non-empty sets \(w \subseteq \lambda \) we define when \(\text{rk}(w, \mathcal{M}) \geq \delta \). Let \(w = \{\alpha_0, \ldots, \alpha_n\} \subseteq \lambda \), \(|w| = n + 1 \).

(a) \(\text{rk}(w) \geq 0 \) if and only if for every quantifier free formula \(\varphi \in \mathcal{L}(\tau) \) and each \(k \leq n \), if \(\mathcal{M} \models \varphi[\alpha_0, \ldots, \alpha_k, \ldots, \alpha_n] \) then the set

\[
\{ \alpha \in \lambda : \mathcal{M} \models \varphi[\alpha_0, \ldots, \alpha_{k-1}, \alpha, \alpha_{k+1}, \ldots, \alpha_n] \}
\]

is uncountable;

(b) if \(\delta \) is limit, then \(\text{rk}(w, \mathcal{M}) \geq \delta \) if and only if \(\text{rk}(w, \mathcal{M}) \geq \gamma \) for all \(\gamma < \delta \);

(c) \(\text{rk}(w, \mathcal{M}) \geq \delta + 1 \) if and only if for every quantifier free formula \(\varphi \in \mathcal{L}(\tau) \) and each \(k \leq n \), if \(\mathcal{M} \models \varphi[\alpha_0, \ldots, \alpha_k, \ldots, \alpha_n] \) then there is \(\alpha^* \in \lambda \setminus w \) such that

\[
\text{rk}(w \cup \{\alpha^*\}, \mathcal{M}) \geq \delta \text{ and } \mathcal{M} \models \varphi[\alpha_0, \ldots, \alpha_{k-1}, \alpha^*, \alpha_{k+1}, \ldots, \alpha_n].
\]

2. Similarly, for finite non-empty sets \(w \subseteq \lambda \) we define when \(\text{rk}^*(w, \mathcal{M}) \geq \delta \) (by induction on ordinals \(\delta \)). Let \(w = \{\alpha_0, \ldots, \alpha_n\} \subseteq \lambda \). We take clauses (a) and (b) above and

(c)* \(\text{rk}^*(w, \mathcal{M}) \geq \delta + 1 \) if and only if for every quantifier free formula \(\varphi \in \mathcal{L}(\tau) \) and each \(k \leq n \), if \(\mathcal{M} \models \varphi[\alpha_0, \ldots, \alpha_k, \ldots, \alpha_n] \) then there are pairwise distinct \(\langle \alpha^*_\zeta : \zeta < \omega_1 \rangle \subseteq \lambda \setminus \{w \setminus \{\alpha_k\}\} \) such that \(\alpha^*_0 = \alpha_k \) and for all \(\varepsilon < \zeta < \omega_1 \) we have

\[
\text{rk}^*(w \setminus \{\alpha_k\} \cup \{\alpha^*_\varepsilon, \alpha^*_\zeta\}, \mathcal{M}) \geq \delta
\]

and \(\mathcal{M} \models \varphi[\alpha_0, \ldots, \alpha_{k-1}, \alpha^*_\varepsilon, \alpha_{k+1}, \ldots, \alpha_n] \).

By a straightforward induction on \(\alpha \) one easily shows the following observation.

Observation 2.2. If \(\emptyset \neq v \subseteq w \) then

- \(\text{rk}(w, \mathcal{M}) \geq \delta \geq \gamma \) implies \(\text{rk}(v, \mathcal{M}) \geq \gamma \), and

- \(\text{rk}^*(w, \mathcal{M}) \geq \delta \geq \gamma \) implies \(\text{rk}^*(v, \mathcal{M}) \geq \gamma \).
Hence we may define the rank functions on finite non-empty subsets of λ.

Definition 2.3. The ranks $\text{rk}(w, M)$ and $\text{rk}^*(w, M)$ of a finite non-empty set $w \subseteq \lambda$ are defined as:

- $\text{rk}(w, M) = -1$ if $\neg(\text{rk}(w, M) \geq 0)$, and
 $\text{rk}^*(w, M) = -1$ if $\neg(\text{rk}^*(w, M) \geq 0)$,
- $\text{rk}(w, M) = \infty$ if $\text{rk}(w, M) \geq \delta$ for all ordinals δ, and
 $\text{rk}^*(w, M) = \infty$ if $\text{rk}^*(w, M) \geq \delta$ for all ordinals δ,
- for an ordinal δ: $\text{rk}(w, M) = \delta$ if $\text{rk}(w, M) \geq \delta$ but $\neg(\text{rk}(w, M) \geq \delta + 1)$,
 and $\text{rk}^*(w, M) = \delta$ if $\text{rk}^*(w, M) \geq \delta$ but $\neg(\text{rk}^*(w, M) \geq \delta + 1)$.

Definition 2.4.

1. For an ordinal ε and a cardinal λ let $\text{NPr}_\varepsilon(\lambda)$ be the following statement: “there is a model M^* with the universe λ and a countable vocabulary τ^* such that $\sup\{\text{rk}(w, M^*) : \emptyset \neq w \in [\lambda]^{<\omega} \} < \varepsilon$.”

2. The statement $\text{NPr}_\varepsilon^*(\lambda)$ is defined similarly but using the rank rk^*.

3. $\text{Pr}_\varepsilon(\lambda)$ and $\text{Pr}_\varepsilon^*(\lambda)$ are the negations of $\text{NPr}_\varepsilon(\lambda)$ and $\text{NPr}_\varepsilon^*(\lambda)$, respectively.

Observation 2.5.

1. If a model M^+ (on λ) is an expansion\(^1\) of the model M, then $\text{rk}^*(w, M^+) \leq \text{rk}(w, M^+) \leq \text{rk}(w, M)$.

2. If λ is uncountable and $\text{NPr}_\varepsilon(\lambda)$, then there is a model M^* with the universe λ and a countable vocabulary τ^* such that
 - $\text{rk}(\{\alpha\}, M^*) \geq 0$ for all $\alpha \in \lambda$ and
 - $\text{rk}(w, M^*) < \varepsilon$ for every finite non-empty set $w \subseteq \lambda$.

Proposition 2.6 (See [7, Claim 1.7]).

1. $\text{NPr}_1(\omega_1)$.

2. If $\text{NPr}_\varepsilon(\lambda)$, then $\text{NPr}_{\varepsilon+1}(\lambda^+)$.

3. If $\text{NPr}_\varepsilon(\mu)$ for $\mu < \lambda$ and $\text{cf}(\lambda) = \omega$, then $\text{NPr}_{\varepsilon+1}(\lambda)$.

\(^1\) So M^+ is a model with a countable vocabulary $\tau^* \supseteq \tau$, with the universe λ, and the interpretation of symbols from τ in M^+ is the same as in M.
4. $\text{NPr}_\varepsilon(\lambda)$ implies $\text{NPr}_\varepsilon^*(\lambda)$.

Proof. (1) Let Q be a binary relational symbol and let M_1 be a model with the universe ω_1, the vocabulary $\tau(M_1) = \{Q\}$ and such that $Q^{M_1} = \{(\alpha, \beta) \in \omega_1 \times \omega_1 : \alpha < \beta\}$. Then for each $\alpha_0 < \alpha_1 < \omega_1$ we have $M_1 \models Q[\alpha_0, \alpha_1]$ but the set $\{\alpha < \omega_1 : M_1 \models Q[\alpha, \alpha_1]\}$ is countable. Hence $\text{rk}(w, M_1) = -1$ whenever $|w| \geq 2$ and $\text{rk}(\{\alpha\}, M_1) = 0$ for $\alpha \in \omega_1$. Consequently, M_1 witnesses $\text{NPr}_1(\omega_1)$.

(2) Assume $\text{NPr}_\varepsilon(\lambda)$ holds true as witnessed by a model M with the universe λ and a countable vocabulary τ. We may assume that $\tau = \{R_i : i < \omega\}$, where each R_i is a relational symbol of arity $n(i)$. Let S be a new binary relational symbol, T be a new unary relational symbol, and Q_i be a new $(n(i) + 1)$-ary relational symbol (for $i < \omega$). Let $\tau^+ = \{R_i, Q_i : i < \omega\} \cup \{S, T\}$.

For each $\gamma \in [\lambda, \lambda^+]$ fix a bijection $f_\gamma : \gamma \rightarrow \lambda$. We define a model M^+:

- the vocabulary of M^+ is τ^+ and the universe of M^+ is λ^+,
- $R_i^{M^+} = R_i^M \subseteq \lambda^{n(i)}$,
- $Q^i_{M^+} = \{(\alpha_0, \ldots, \alpha_{n(i)-1}, \alpha_{n(i)}): \lambda \leq \alpha_{n(i)} < \lambda^+ & (\forall \ell < n(i))(\alpha_{\ell} < \alpha_{n(i)}) \land (f_{\alpha_{n(i)}}(\alpha_0), \ldots, f_{\alpha_{n(i)}}(\alpha_{n(i)-1})) \in R_i^M\}$,
- $S^{M^+} = \{((\alpha_0, \alpha_1) \in \lambda^+ \times \lambda^+: \alpha_0 < \alpha_1\}$ and $T^{M^+} = [\lambda, \lambda^+]$.

Claim 2.6.1. (i) If $\lambda \leq \gamma < \lambda^+$, $\emptyset \neq w \subseteq \gamma$, then $\text{rk}(w \cup \{\gamma\}, M^+) \leq \text{rk}(f_\gamma[w], M)$ and thus $\text{rk}(w \cup \{\gamma\}, M^+) < \varepsilon$.

(ii) If $\emptyset \neq w \subseteq \lambda$, then $\text{rk}(w, M^+) \leq \text{rk}(w, M)$ and thus $\text{rk}(w, M^+) < \varepsilon$.

(iii) If $\lambda \leq \gamma < \lambda^+$, then $\text{rk}(\{\gamma\}, M^+) \leq \varepsilon$.

Proof of the Claim. (i) By induction on α we show that $\alpha \leq \text{rk}(w \cup \{\gamma\}, M^+)$ implies $\alpha \leq \text{rk}(f_\gamma[w], M)$ (for all sets $w \subseteq \gamma$ with fixed $\gamma \in [\lambda, \lambda^+]$).

(*) Assume $\text{rk}(w \cup \{\gamma\}, M^+) \geq 0$, $w = \{\alpha_0, \ldots, \alpha_n\}$ and $k \leq n$. Let $\phi(x_0, \ldots, x_n)$ be a quantifier free formula in the vocabulary τ such that $M \models \phi[f_\gamma(\alpha_0), \ldots, f_\gamma(\alpha_k), \ldots, f_\gamma(\alpha_n)]$.
Let \(\varphi^*(x_0, \ldots, x_n, x_{n+1}) \) be a quantifier free formula in the vocabulary \(\tau^+ \) obtained from \(\varphi \) by replacing each \(R_i(y_0, \ldots, y_{n(i)}-1) \) (where \(\{y_0, \ldots, y_{n(i)}-1\} \subseteq \{x_0, \ldots, x_n\} \)) with \(Q_i(y_0, \ldots, y_{n(i)}-1, x_{n+1}) \) and let \(\varphi^+ \) be

\[
\varphi^*(x_0, \ldots, x_n, x_{n+1}) \land S(x_0, x_{n+1}) \land \ldots \land S(x_n, x_{n+1}).
\]

Then \(M^+ \models \varphi^+[\alpha_0, \ldots, \alpha_k, \ldots, \alpha_n, \gamma] \). By our assumption on \(w \cup \{\gamma\} \) we know that the set

\[
A = \{ \beta < \lambda^+ : M^+ \models \varphi^+[\alpha_0, \ldots, \alpha_{k-1}, \beta, \alpha_{k+1}, \ldots, \alpha_n, \gamma] \}
\]

is uncountable. Clearly \(A \subseteq \gamma \) (note \(S(x_k, x_{n+1}) \) in \(\varphi^+ \)) and thus the set \(f_\gamma[A] \) is an uncountable subset of \(\lambda \). For each \(\beta \in A \) we have

\[
M \models \varphi[f_\gamma(\alpha_0), \ldots, f_\gamma(\beta), \ldots, f_\gamma(\alpha_n)],
\]

so now we may conclude that \(\operatorname{rk}(f_\gamma[w], M) \geq 0 \).

(\ast)_1 Assume \(\operatorname{rk}(w \cup \{\gamma\}, M^+) \geq \alpha + 1 \). Let \(\varphi(x_0, \ldots, x_n) \) be a quantifier free formula in the vocabulary \(\tau, k \leq n \) and \(w = \{\alpha_0, \ldots, \alpha_n\} \), and suppose that \(M \models \varphi[f_\gamma(\alpha_0), \ldots, f_\gamma(\alpha_k), \ldots, f_\gamma(\alpha_n)] \). Let \(\varphi^* \) and \(\varphi^+ \) be defined exactly as in (\ast)_0. Then \(M^+ \models \varphi^+[\alpha_0, \ldots, \alpha_k, \ldots, \alpha_n, \gamma] \). By our assumption there is \(\beta^* \in \lambda^+ \setminus (w \cup \{\gamma\}) \) such that \(M^+ \models \varphi^+[\alpha_0, \ldots, \beta^*, \ldots, \alpha_n, \gamma] \) and \(\operatorname{rk}(w \cup \{\gamma, \beta^*\}, M^+) \geq \alpha \). Necessarily \(\beta^* < \gamma \), and by the inductive hypothesis \(\operatorname{rk}(f_\gamma[w \cup \{\beta^*\}], M) \geq \alpha \). Clearly \(M \models \varphi[f_\gamma(\alpha_0), \ldots, f_\gamma(\beta^*), \ldots, f_\gamma(\alpha_n)] \)

and we may conclude \(\operatorname{rk}(f_\gamma[w], M) \geq \alpha + 1 \).

(\ast)_2 If \(\alpha \) is limit and \(\operatorname{rk}(w \cup \{\gamma\}, M^+) \geq \alpha \) then, by the inductive hypothesis, for each \(\beta < \alpha \) we have \(\beta \leq \operatorname{rk}(w \cup \{\gamma\}, M^+) \leq \operatorname{rk}(f_\gamma[w], M) \). Hence \(\alpha \leq \operatorname{rk}(f_\gamma[w], M) \).

(ii) Induction similar to part (i). For a quantifier free formula \(\varphi(x_0, \ldots, x_n) \) in the vocabulary \(\tau \), let \(\varphi^* \) be the formula \(\varphi(x_0, \ldots, x_n) \land \neg T(x_0) \land \ldots \land \neg T(x_n) \) (so \(\varphi^* \) is a quantifier free formula in the vocabulary \(\tau^+ \)). If \(\varphi \) witnesses that \(\neg(\operatorname{rk}(w, M) \geq 0) \), then \(\varphi^* \) witnesses \(\neg(\operatorname{rk}(w, M^+) \geq 0) \), and similarly with \(\alpha + 1 \) in place of 0.

(iii) Suppose towards contradiction that \(\varepsilon + 1 \leq \operatorname{rk}(\{\gamma\}, M^+) \). Since \(M^+ \models T[\gamma] \), we may find \(\gamma' \neq \gamma \) such that \(\operatorname{rk}(\{\gamma, \gamma'\}, M^+) \geq \varepsilon \) and \(M^+ \models T[\gamma'] \). Let \(\{\gamma, \gamma'\} = \{\gamma_0, \gamma_1\} \) where \(\gamma_0 < \gamma_1 \). It follows from part (i) that \(\operatorname{rk}(\{\gamma_0, \gamma_1\}, M^+) < \varepsilon \), a contradiction. \(\square \)
It follows from Claim 2.6.1 (and Observation 2.2) that \(\text{rk}(w, M^+) \leq \varepsilon \) for every non-empty set \(w \subseteq \lambda^+ \). Consequently, the model \(M^+ \) witnesses \(\text{NP}_{\varepsilon+1}(\lambda^+) \).

(3) Let \(\langle \mu_n : n < \omega \rangle \) be an increasing sequence cofinal in \(\lambda \). For each \(n \) fix a model \(M_n \) with a countable vocabulary \(\tau(M_n) \) consisting of relational symbols only and with the universe \(\mu_n \) and such that \(\text{rk}(w, M_n) < \varepsilon \) for nonempty finite \(w \subseteq \mu_n \). We also assume that \(\tau(M_n) \cap \tau(M_{m}) = \emptyset \) for \(n < m < \omega \). Let \(P_n \) (for \(n < \omega \)) be new unary relational symbols and let \(\tau = \bigcup \{ \tau(M_n) : n < \omega \} \cup \{ P_n : n < \omega \} \). Consider a model \(M \) in vocabulary \(\tau \) with the universe \(\lambda \) and such that

- \(P^M_n = \mu_n \) for \(n < \omega \), and
- for each \(n < \omega \) and \(S \in \tau(M_n) \) we have \(S^M = S^{M_n} \).

Claim 2.6.2. If \(w \) is a finite non-empty subset of \(\mu_n \), \(n < \omega \), then \(\text{rk}(w, M) \leq \text{rk}(w, M_n) < \varepsilon \).

Proof of the Claim. Similar to the proofs in Claim 2.6.1. \(\square \)

(4) Follows from Observation 2.5(1). \(\square \)

Proposition 2.7. (See [7, Conclusion 1.8]). Assume \(\beta < \alpha < \omega_1 \), \(M \) is a model with a countable vocabulary \(\tau \) and the universe \(\mu \), \(m, n < \omega \), \(n > 0 \), \(A \subseteq \mu \) and \(|A| \geq \beth_\omega \). Then there is \(w \subseteq A \) with \(|w| = n \) and \(\text{rk}^*(w, M) \geq \omega \cdot \beta + m \). \(^2\)

Proof. Induction on \(\alpha < \omega_1 \).

Step \(\alpha = 1 \) (and \(\beta = 0 \)): Let \(M, \mu, n, m \) be as in the assumptions, \(A \subseteq \mu \) and \(|A| \geq \beth_\omega \). Using the Erdős–Rado theorem we may choose a sequence \(\langle \alpha_\varepsilon : \varepsilon < \omega_2 \rangle \) of distinct elements of \(A \) such that:

(a) the quantifier free type of \(\langle \alpha_{\varepsilon_0}, \ldots, \alpha_{\varepsilon_{m+n}} \rangle \) in \(M \) is constant for \(\varepsilon_0 < \ldots < \varepsilon_{m+n} < \omega_2 \), and

(b) for each \(k \leq m + n \) the value of \(\min\{ \omega, \text{rk}^*(\{ \alpha_{\varepsilon_0}, \ldots, \alpha_{\varepsilon_{m+n-k}} \}, M) \} \) is constant for \(\varepsilon_0 < \ldots < \varepsilon_{m+n-k} < \omega_2 \).

\(^2\) "\(\cdot \)" stands for the ordinal multiplication.
Let $\zeta_\ell = \omega_1 \cdot (\ell + 1)$ (for $\ell = -1, 0, \ldots, m+n$). Suppose $\phi(x_0, \ldots, x_{m+n}) \in \mathcal{L}(\tau)$ is a quantifier free formula, $k \leq m+n$ and
\[M \models \phi[\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_k}, \ldots, \alpha_{\zeta_{m+n}}]. \]

It follows from the property stated in (a) above that for every ε in the (uncountable) interval (ζ_{k-1}, ζ_k) we have
\[M \models \varphi[\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_{k-1}}, \alpha_{\varepsilon}, \alpha_{\zeta_{k+1}}, \ldots, \alpha_{\zeta_{m+n}}]. \]

Consequently, $\text{rk}^*(\{\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_{m+n}}\}, M) \geq 0$, and the homogeneity stated in (b) implies that for every nonempty set $w \subseteq \omega_2$ with at most $m+n+1$ elements we have $\text{rk}^*(\{\alpha_{\varepsilon} : \varepsilon \in w\}, M) \geq 0$. Now, by induction on $k \leq m+n$ we will argue that

\[(*)_k \text{ for every nonempty set } w \subseteq \omega_2 \text{ with at most } m+n+1-k \text{ elements } \quad \text{we have } \text{rk}^*(\{\alpha_{\varepsilon} : \varepsilon \in w\}, M) \geq k. \]

We have already justified $(*)_0$. For the inductive step assume $(*)_k$ and $k < m+n$. Let $\zeta_\ell = \omega_1 \cdot (\ell + 1)$ and suppose that $\varphi(x_0, \ldots, x_{m+n-k-1})$ is a quantifier free formula, $M \models \varphi[\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_z}, \ldots, \alpha_{\zeta_{m+n-k-1}}]$ and $0 \leq z \leq m+n-k-1$. By the homogeneity stated in (a), for every ε in the uncountable interval (ζ_{z-1}, ζ_z) we have
\[M \models \varphi[\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_{z-1}}, \alpha_{\varepsilon}, \alpha_{\zeta_{z+1}}, \ldots, \alpha_{\zeta_{m+n-k-1}}]. \]

The inductive hypothesis $(*)_k$ implies that
\[\text{rk}^*(\{\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_{z-1}}, \alpha_{\varepsilon}, \alpha_{\zeta_{z+1}}, \ldots, \alpha_{\zeta_{m+n-k-1}}\}, M) \geq k \]
(for any $\zeta_{z-1} < \varepsilon < \zeta_z \leq \zeta_z$). Now we easily conclude that $k+1 \leq \text{rk}^*(\{\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_{m+n-k-1}}\}, M)$ and $(*)_k+1$ follows by the homogeneity given by (b).

Finally note that $(*)_m+1$ gives the desired conclusion: taking any $\varepsilon_0 < \ldots < \varepsilon_{n-1} < \omega_2$ we will have $m+1 \leq \text{rk}^*(\{\alpha_{\varepsilon_0}, \ldots, \alpha_{\varepsilon_{n-1}}\}, M)$.

Step $\alpha = \gamma + 1$: Let M, μ, n, m be as in the assumptions, $A \subseteq \mu$ and $|A| \geq \beth_{\omega \cdot \gamma+\omega}$. By the Erdős–Rado theorem we may choose a sequence $\langle \alpha_{\varepsilon} : \varepsilon < \beth_{\omega \cdot \gamma} \rangle$ of distinct elements of A such that the following two demands are satisfied.
(c) The quantifier free type of $\langle \alpha_{\varepsilon_0}, \ldots, \alpha_{\varepsilon_{m+n}} \rangle$ in M is constant for $\varepsilon_0 < \ldots < \varepsilon_{m+n} < \omega$.

(d) For each $k \leq m+n$ the value of $\min\{\omega \cdot (\gamma+1), \text{rk}^*\{\alpha_{\varepsilon_0}, \ldots, \alpha_{\varepsilon_{m+n-k}}\}, M\}$ is constant for $\varepsilon_0 < \ldots < \varepsilon_{m+n-k} < \omega$.

For any $\ell < \omega$ and $\gamma' < \gamma$, we may apply the inductive hypothesis to $\{\alpha_{\varepsilon} : \varepsilon < \omega\}, \ell, m+n+1$ and γ' to find $\varepsilon_0 < \ldots < \varepsilon_{m+n} < \omega$ such that $\text{rk}^*\{\alpha_{\varepsilon_0}, \ldots, \alpha_{\varepsilon_{m+n}}\}, M) \geq \omega \cdot \gamma' + \ell$. By the homogeneity in (d) this implies that

$$(**)_0 \text{ for all } \varepsilon_0 < \ldots < \varepsilon_{m+n} < \omega \text{ we have } \text{rk}^*\{\alpha_{\varepsilon_0}, \ldots, \alpha_{\varepsilon_{m+n}}\}, M) \geq \omega \cdot \gamma.$$

Now, by induction on $k \leq m+n$ we argue that

$$(**)_k \text{ for each } \varepsilon_0 < \ldots < \varepsilon_{m+n-k} < (\omega) \text{ we have } \omega \cdot \gamma + k \leq \text{rk}^*\{\alpha_{\varepsilon_0}, \ldots, \alpha_{\varepsilon_{m+n-k}}\}, M).$$

So assume $(**)_k$, $k < m+n$ and let $\zeta_\ell = \omega_1 \cdot (\ell+1)$ (for $\ell = -1, 0, \ldots, m+n$) and $0 \leq z \leq m+n-k-1$. Suppose that $M \models \varphi[\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_z}, \ldots, \alpha_{\zeta_{m+n-k-1}}]$. Then by the homogeneity in (c), for every ε in the uncountable interval (ζ_{z-1}, ζ_z) we have $M \models \varphi[\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_{z-1}}, \alpha_\varepsilon, \alpha_{\zeta_z+1}, \ldots, \alpha_{\zeta_{m+n-k-1}}]$. By the inductive hypothesis $(**)_k$ we know

$$\omega \cdot \gamma + k \leq \text{rk}^*\{\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_{z-1}}, \alpha_\varepsilon, \alpha_{\zeta_z+1}, \ldots, \alpha_{\zeta_{m+n-k-1}}\}, M)$$

(for $\zeta_{z-1} < \varepsilon < \zeta_z$). Now we easily conclude that $\omega \cdot \gamma + k + 1 \leq \text{rk}^*\{\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_{m+n-k-1}}\}, M)$, and $(**)_{k+1}$ follows by the homogeneity in (d).

Finally note that $(**)_m+1$ gives the desired conclusion: taking any $\zeta_0 < \ldots < \zeta_{n-1} < \omega$ we will have $\text{rk}^*\{\alpha_{\zeta_0}, \ldots, \alpha_{\zeta_{n-1}}\}, M) \geq \omega \cdot \gamma + m + 1$.

Step α is limit: Straightforward. \square

Definition 2.8. Let λ_{ω_1} be the smallest cardinal λ such that $\Pr_{\omega_1}(\lambda)$ and $\lambda^*_{\omega_1}$ be the smallest cardinal λ such that $\Pr^*_{\omega_1}(\lambda)$.

Corollary 2.9. 1. If $\alpha < \omega_1$, then $\text{NPr}_{\omega_1}(N_\alpha)$.
2. \(\Pr_{\omega_1}^*(\mathfrak{A}_{\omega_1}) \) holds and hence also \(\Pr_{\omega_1}(\mathfrak{A}_{\omega_1}) \).

3. \(n_{\omega_1} \leq \lambda_{\omega_1} \leq \lambda_{\omega_1}^* \leq \mathfrak{A}_{\omega_1}. \)

Proof. (1) Immediately from Proposition 2.6, by induction on \(\alpha < \omega_1. \)
(2) Follows from Proposition 2.7 (and 2.6(4)).
(3) By clauses (1), (2) above. \(\square \)

Proposition 2.10. (See [7, Claim 1.10(1)].) If \(\mathbb{P} \) is a ccc forcing notion and \(\lambda \) is a cardinal such that \(\Pr_{\omega_1}^*(\lambda) \) holds, then \(\mathbb{P} \Vdash " \Pr_{\omega_1}^*(\lambda) \) and hence also \(\Pr_{\omega_1}(\lambda) " \).

Proof. Suppose towards contradiction that for some \(p \in \mathbb{P} \) we have \(p \Vdash \text{NPr}_{\omega_1}^*(\lambda) \). Let \(\tau = \{R_{n,\zeta} : n, \zeta < \omega \} \) where \(R_{n,\zeta} \) is an \(n \)-ary relation symbol (for \(n, \zeta < \omega \)). Then we may pick a name \(\mathbb{M} \) for a model on \(\lambda \) in vocabulary \(\tau \) and an ordinal \(\alpha_0 < \omega_1 \) such that

\[
p \Vdash "\mathbb{M} = (\lambda, \{R_{n,\zeta}^{\mathbb{M}}\}_{n,\zeta<\omega}) \text{ is a model such that}
\]
(a) for every \(n \) and a quantifier free formula \(\varphi(x_0, \ldots, x_{n-1}) \in \mathcal{L}(\tau) \)
there is \(\zeta < \omega \) such that for all \(\gamma_0, \ldots, \gamma_{n-1} \)
\(\mathbb{M} \models \varphi[\gamma_0, \ldots, \gamma_{n-1}] \iff R_{n,\zeta}[\gamma_0, \ldots, \gamma_{n-1}] \)
(b) \(\sup\{\text{rk}(w, \mathbb{M}) : \emptyset \neq w \in [\lambda]^{<\omega}) < \alpha_0 \". \)

Now, let \(S_{n,\zeta,\beta,k} \) be an \(n \)-ary predicate (for \(k < n, \zeta < \omega \) and \(-1 \leq \beta < \alpha_0 \)) and let \(\tau^* = \{S_{n,\zeta,\beta,k} : k < n < \omega, \zeta < \omega \) and \(-1 \leq \beta < \alpha_0 \}. \) (So \(\tau^* \) is a countable vocabulary.) We define a model \(\mathbb{M}^* \) in the vocabulary \(\tau^* \). The universe of \(\mathbb{M}^* \) is \(\lambda \) and for \(k < n, \zeta < \omega \) and \(-1 \leq \beta < \alpha_0 \):

\[
S_{n,\zeta,\beta,k}^{\mathbb{M}^*} = \{(\gamma_0, \ldots, \gamma_{n-1}) \in n\lambda : \gamma_0 < \ldots < \gamma_{n-1} \text{ and}
\text{some condition } q \geq p \text{ forces that}
\text{"} \mathbb{M} \models R_{n,\zeta}[\gamma_0, \ldots, \gamma_{n-1}] \text{ and } \text{rk}^*(\{\gamma_0, \ldots, \gamma_{n-1}\}, \mathbb{M}) = \beta \text{ and}
R_{n,\zeta,\beta,k} \text{ witness that } \neg(\text{rk}^*(\{\gamma_0, \ldots, \gamma_{n-1}\}, \mathbb{M}) \geq \beta + 1) " \}.
\]

Claim 2.10.1. For every \(n \) and every increasing tuple \((\gamma_0, \ldots, \gamma_{n-1}) \in n\lambda \) there are \(\zeta < \omega \) and \(-1 \leq \beta < \alpha_0 \) and \(k < n \) such that \(\mathbb{M}^* \models S_{n,\zeta,\beta,k}[\gamma_0, \ldots, \gamma_{n-1}] \).

Proof of the Claim. Clear. \(\square \)
Claim 2.10.2. If \((\gamma_0, \ldots, \gamma_{n-1}) \in \lambdaint{\lambda} \text{ and } M^* \models S_{n, \zeta, \beta, k}[\gamma_0, \ldots, \gamma_{n-1}]\),
then
\[\text{rk}^*(\{\gamma_0, \ldots, \gamma_{n-1}\}, M^*) \leq \beta. \]

Proof of the Claim. First let us deal with the case of \(\beta = -1\). Assume towards contradiction that \(M^* \models S_{n, \zeta, -1, k}[\gamma_0, \ldots, \gamma_{n-1}]\), but \(\text{rk}^*(\{\gamma_0, \ldots, \gamma_{n-1}\}, M^*) \geq 0\). Then we may find distinct \(\langle \delta_\varepsilon : \varepsilon < \omega_1 \rangle \subseteq \lambda \setminus \{\gamma_0, \ldots, \gamma_{n-1}\}\) such that

\[(\otimes)_1 \ M^* \models S_{n, \zeta, -1, k}[\gamma_0, \ldots, \gamma_{k-1}, \delta_\varepsilon, \gamma_{k+1}, \ldots, \gamma_{n-1}] \text{ for all } \varepsilon < \omega_1.\]

For \(\varepsilon < \omega_1\) let \(p_\varepsilon \in \mathbb{P}\) be such that \(p_\varepsilon \geq p\) and

\[p_\varepsilon \models " M \models R_{n, \zeta}[\gamma_0, \ldots, \delta_\varepsilon, \ldots, \gamma_{n-1}] \text{ and } \text{rk}^*(\{\gamma_0, \ldots, \delta_\varepsilon, \ldots, \gamma_{n-1}\}, M) = -1 \text{ and } R_{n, \zeta, k} \text{ witness that } \neg (\text{rk}^*(\{\gamma_0, \ldots, \gamma_{k-1}, \delta_\varepsilon, \gamma_{k+1}, \ldots, \gamma_{n-1}\}, M) \geq 0) " \]

Let \(Y\) be a name \(\mathbb{P}\)-name such that \(p \models Y = \{\varepsilon < \omega_1 : p_\varepsilon \in \mathcal{G}_\mathbb{P}\}\). Since \(\mathbb{P}\) satisfies ccc, we may pick \(p^* \geq p\) such that \(p^* \models "Y \text{ is uncountable}"\). Since

\[p^* \models (\forall \varepsilon \in Y)(M \models R_{n, \zeta}[\gamma_0, \ldots, \gamma_{k-1}, \delta_\varepsilon, \gamma_{k+1}, \ldots, \gamma_{n-1}]), \]

then also

\[p^* \models \{\delta < \lambda : M \models R_{n, \zeta}[\gamma_0, \ldots, \gamma_{k-1}, \delta, \gamma_{k+1}, \ldots, \gamma_{n-1}]\} \text{ is uncountable.} \]

But

\[p^* \models (\forall \varepsilon \in Y) \]

\[(R_{n, \zeta, k} \text{ witness } \neg (\text{rk}^*(\{\gamma_0, \ldots, \gamma_{k-1}, \delta_\varepsilon, \gamma_{k+1}, \ldots, \gamma_{n-1}\}, M) \geq 0)), \]

and hence

\[p^* \models \{\delta < \lambda : M \models R_{n, \zeta}[\gamma_0, \ldots, \gamma_{k-1}, \delta, \gamma_{k+1}, \ldots, \gamma_{n-1}]\} \text{ is countable,} \]
a contradiction.

Next we continue the proof of the Claim by induction on \(\beta < \alpha_0\), so we assume that \(0 \leq \beta\) and for \(\beta' < \beta\) our claim holds true (for any \(n, \zeta, k\)). Assume towards contradiction that \(M^* \models S_{n, \zeta, \beta, k}[\gamma_0, \ldots, \gamma_{n-1}]\), but \(\text{rk}^*(\{\gamma_0, \ldots, \gamma_{n-1}\}, M^*) \geq \beta + 1\). Then we may find distinct \(\langle \delta_\varepsilon : \varepsilon < \omega_1 \rangle \subseteq \lambda \setminus (w \setminus \{\gamma_k\})\) such that
so we assume that $0 \leq \lambda$ but $\text{rk}^{\ast} (\{ \gamma_0, \ldots, \gamma_{k-1}, \delta_{\varepsilon}, \gamma_k+1, \ldots, \gamma_{n-1} \}, M^\ast) \geq \beta$ for all $\varepsilon < \zeta < \omega_1$. For $\varepsilon < \omega_1$ let $p_\varepsilon \in \mathbb{P}$ be such that $p_\varepsilon \geq p$ and

$\begin{align*}
p_\varepsilon &\models " M \models R_{n, \zeta}[\gamma_0, \ldots, \gamma_{k-1}, \delta_{\varepsilon}, \gamma_k+1, \ldots, \gamma_{n-1}] \\
&\text{and } \text{rk}^{\ast}(\{ \gamma_0, \ldots, \gamma_{k-1}, \delta_{\varepsilon}, \gamma_k+1, \ldots, \gamma_{n-1} \}, M) = \beta \\
&\text{and } R_{n, \zeta}, k \text{ witness that } \\
&\neg (\text{rk}^{\ast}(\{ \gamma_0, \ldots, \gamma_{k-1}, \delta_{\varepsilon}, \gamma_k+1, \ldots, \gamma_{n-1} \}, M) \geq \beta + 1)"
\end{align*}$

Take $p^\ast \geq p$ such that

$p^\ast \models " Y \overset{\text{def}}{=} \{ \varepsilon < \omega_1 : p_\varepsilon \in G_\mathbb{P} \text{ is uncountable} \}.$

Since

$p^\ast \models (\forall \varepsilon \in Y) \left(M \models R_{n, \zeta}[\gamma_0, \ldots, \gamma_{k-1}, \delta_{\varepsilon}, \gamma_k+1, \ldots, \gamma_{n-1}] \wedge \\
R_{n, \zeta}, k \text{ witness that } \neg (\text{rk}^{\ast}(\{ \gamma_0, \ldots, \gamma_{k-1}, \delta_{\varepsilon}, \gamma_k+1, \ldots, \gamma_{n-1} \}, M) \geq \beta + 1) \right),$

we see that

$p^\ast \not\models (\forall \varepsilon, \zeta \in Y)(\varepsilon \neq \zeta \Rightarrow \text{rk}^{\ast}(\{ \gamma_0, \ldots, \gamma_{k-1}, \delta_{\varepsilon}, \delta_{\zeta}, \gamma_k+1, \ldots, \gamma_{n-1} \}, M) \geq \beta).$

Consequently we may pick $q \geq p^\ast, \varepsilon_0, \zeta_0 < \omega_1$ and $\gamma < \beta$ and $\xi < \omega$ and $\ell \leq n$ such that $\delta_{\varepsilon_0} < \delta_{\zeta_0}$ and

$q \models " p_{\varepsilon_0}, p_{\zeta_0} \in G_\mathbb{P} \text{ and } \text{rk}^{\ast}(\{ \gamma_0, \ldots, \gamma_{k-1}, \delta_{\varepsilon_0}, \delta_{\zeta_0}, \gamma_k+1, \ldots, \gamma_{n-1} \}, M) = \gamma \\
\text{and } R_{n+1, \xi} \text{ and } \ell \text{ witness that } \\
\neg (\text{rk}^{\ast}(\{ \gamma_0, \ldots, \gamma_{k-1}, \delta_{\varepsilon_0}, \delta_{\zeta_0}, \gamma_k+1, \ldots, \gamma_{n-1} \}, M) \geq \gamma + 1)\".$

Then $M^\ast \models S_{n+1, \xi, \gamma, \ell}[\gamma_0, \ldots, \gamma_{k-1}, \delta_{\varepsilon_0}, \delta_{\zeta_0}, \gamma_k+1, \ldots, \gamma_{n-1}]$ and by the inductive hypothesis $\text{rk}^{\ast}(\{ \gamma_0, \ldots, \gamma_{k-1}, \delta_{\varepsilon_0}, \delta_{\zeta_0}, \gamma_k+1, \ldots, \gamma_{n-1} \}, M) \leq \gamma$, contradicting clause $(\oplus)_2$ above.

\begin{flushright} \square \end{flushright}

Corollary 2.11. Let $\mu = \beth_{\omega_1} \leq \kappa$ and \mathbb{C}_κ be the forcing notion adding κ Cohen reals. Then $\models_{\mathbb{C}_\kappa} \lambda_{\omega_1} \leq \mu \leq \mathfrak{c}$.
3. Spectrum of translation non-disjointness

Definition 3.1. Let $B \subseteq \omega^2$ and $1 \leq \kappa \leq \mathfrak{c}$.

1. We say that B is perfectly orthogonal to κ-small (or a κ-pots-set) if there is a perfect set $P \subseteq \omega^2$ such that $|(B + x) \cap (B + y)| \geq \kappa$ for all $x, y \in P$. The set B is a κ-npots-set if it is not κ-pots.

2. We say that B has λ many pairwise κ-nondisjoint translations if for some set $X \subseteq \omega^2$ of cardinality λ, for all $x, y \in X$ we have $|(B + x) \cap (B + y)| \geq \kappa$.

3. We define the spectrum of translation κ-non-disjointness of B as

$$\text{stnd}_\kappa(B) = \{(x, y) \in \omega^2 \times \omega^2 : |(B + x) \cap (B + y)| \geq \kappa\}.$$

Remark 3.2. 1. Note that if $B \subseteq \omega^2$ is an uncountable Borel set, then there is a perfect set $P \subseteq B$. For B, P as above for every $x, y \in P$ we have $0 = x + x = y + y \in (B + x) \cap (B + y)$ and $x + y \in (B + x) \cap (B + y)$. Consequently every uncountable Borel subset of ω^2 is a 2-pots-set.

2. Assume $B \subseteq \omega^2$ and $x, y \in \omega^2$. If $b_x, b_y \in B$ and $b_x + x = b_y + y \in (B + x) \cap (B + y)$, then also $b_x + y = b_y + x \in (B + x) \cap (B + y)$. Consequently, if $(B + x) \cap (B + y) \neq \emptyset$ is finite, then it has an even number of elements.

Proposition 3.3. 1. Let $1 \leq \kappa \leq \mathfrak{c}$. A set $B \subseteq \omega^2$ is a κ-pots-set if and only if there is a perfect set $P \subseteq \omega^2$ such that $P \times P \subseteq \text{stnd}_\kappa(B)$.

2. Assume $k < \omega$. If B is Σ^0_2, then $\text{stnd}_k(B)$ is Σ^0_2 as well. If B is Borel, then $\text{stnd}_k(B)$ and $\text{stnd}_\omega(B)$ are Σ^1_1 and $\text{stnd}_\omega(B)$ is Δ^1_2.

3. Let $\mathfrak{c} < \lambda \leq \mu$ and let \mathbb{C}_μ be the forcing notion adding μ Cohen reals. Then, remembering Definition 3.1(2),

$$\Vdash_{\mathbb{C}_\mu} \text{"if a Borel set } B \subseteq \omega^2 \text{ has } \lambda \text{ many pairwise } \kappa\text{-non-disjoint translates, then } B \text{ is a } \kappa\text{-pots-set".}$$
4. If $k < \omega$, B is a (code for) Σ^0_2 \textit{k−pots−set} and \mathbb{P} is a forcing notion, then $\Vdash_{\mathbb{P}} \text{"B is a (code for) k−pots−set"}$.

5. Assume $\text{Pr}_{\omega_1}(\lambda)$. If $\kappa \leq \omega$ and a Borel set $B \subseteq \omega^2$ has λ many pairwise κ–nondisjoint translates, then it is a κ–\textit{pots−set}.

\textbf{Proof.} (2) Let $B = \bigcup_{n<\omega} F_n$, where each F_n is a closed subset of ω^2. Then

\[(x,y) \in \text{std}_k(B) \iff \left(\exists n_0, \ldots, n_k-1, m_0, \ldots, m_k-1, N < \omega \right) \left(\exists z_0, \ldots, z_k \in \omega^2 \right) \left(\forall i, j < k \right) \left(i \neq j \implies z_i | N \neq z_j | N \right) \land z_i + x \in F_{n_i} \land z_i + y \in F_{m_i} \right) \]

The formula

\[\left(\forall i, j < k \right) \left((i \neq j \implies z_i | N \neq z_j | N) \land z_i + x \in F_{n_i} \land z_i + y \in F_{m_i} \right) \]

represents a compact subset of $(\omega^2)^{k+2}$ and hence easily the assertion follows.

(3) This is a consequence of (1,2) above and Shelah [7, Fact 1.16].

(4) If B is a Σ^0_2 set then the formula “there is a perfect set $P \subseteq \omega^2$ such that for all $x, y \in P$ we have $(x,y) \in \text{std}_k(B)$ ” is Σ^1_2 (remember (2) above).

(5) By [7, Claim 1.12(1)]. \hfill \Box

We want to analyze k–\textit{pots−sets} in more detail, restricting ourselves to Σ^0_2 subsets of ω^2 and even $k < \omega$. For the rest of this section we assume the following Hypothesis.

\textbf{Hypothesis 3.4.} 1. $T_n \subseteq \omega^2$ is a tree with no maximal nodes (for $n < \omega$);

2. $B = \bigcup_{n<\omega} \text{lim}(T_n)$, $\bar{T} = \langle T_n : n < \omega \rangle$;

3. $2 \leq \iota < \omega$, $k = 2\iota$.

\textbf{Definition 3.5.} Let $M_{\bar{T},k}$ consist of all tuples

\[m = (\ell_m, u_m, \bar{h}_m, \bar{g}_m) = (\ell, u, \bar{h}, \bar{g})\]

such that:
(a) \(0 < \ell < \omega, u \subseteq \ell 2\) and \(2 \leq |u|\);

(b) \(\bar{h} = \langle h_i : i < \iota \rangle, \bar{g} = \langle g_i : i < \iota \rangle\) and for each \(i < \iota\) we have
\[
h_i : u^{(2)} \rightarrow \omega \quad \text{and} \quad g_i : u^{(2)} \rightarrow \bigcup_{n<\omega} (T_n \cap \ell 2)
\]

(remember \(u^{(2)} = \{(\eta, \nu) \in u \times u : \eta \neq \nu\}\);

(c) \(g_i(\eta, \nu) \in T_{h_i(\eta, \nu)} \cap \ell 2\) for all \((\eta, \nu) \in u^{(2)}, i < \iota\);

(d) if \((\eta, \nu) \in u^{(2)}\) and \(i < \iota\), then \(\eta + g_i(\eta, \nu) = \nu + g_i(\nu, \eta)\);

(e) for any \((\eta, \nu) \in u^{(2)}\), there are no repetitions in the sequence \(\langle g_i(\eta, \nu), g_i(\nu, \eta) : i < \iota \rangle\).

Definition 3.6. Assume \(m = (\ell, u, \bar{h}, \bar{g}) \in M_{\ell,k}\) and \(\rho \in \ell 2\). We define \(m + \rho = (\ell', u', \bar{h}', \bar{g}')\) by

- \(\ell' = \ell, u' = \{\eta + \rho : \eta \in u\}\),
- \(\bar{h}' = \langle h_i' : i < \iota \rangle\) where \(h_i' : (u')^{(2)} \rightarrow \omega\) are such that \(h_i'(\eta+\rho, \nu+\rho) = h_i(\eta, \nu)\) for \((\eta, \nu) \in u^{(2)}\),
- \(\bar{g}' = \langle g_i' : i < \iota \rangle\) where \(g_i' : (u')^{(2)} \rightarrow \bigcup_{n<\omega} (T_n \cap \ell 2)\) are such that \(g_i'(\eta+\rho, \nu+\rho) = g_i(\eta, \nu)\) for \((\eta, \nu) \in u^{(2)}\).

Also if \(\rho \in \omega 2\), then we set \(m + \rho = m + (\rho|\ell)\).

Observation 3.7.

1. If \(m \in M_{\ell,k}\) and \(\rho \in \ell m 2\), then \(m + \rho \in M_{\ell,k}\).

2. For each \(\rho \in \omega 2\) the mapping
\[
M_{\ell,k} \rightarrow M_{\ell,k} : m \mapsto m + \rho
\]
is a bijection.

Definition 3.8. Assume \(m, n \in M_{\ell,k}\). We say that \(n\) extends \(m\) \((m \sqsubseteq n\) in short) if and only if:

- \(\ell_m \leq \ell_n, u_m = \{\eta|\ell_m : \eta \in u_n\}\), and
• for every \((\eta, \nu) \in (u_\mathfrak{m})^2\) such that \(\eta|\ell_\mathfrak{m} \neq \nu|\ell_\mathfrak{m}\) and each \(i < \iota\) we have
\[
h_i^\mathfrak{m}(\eta|\ell_\mathfrak{m}, \nu|\ell_\mathfrak{m}) = h_i^\mathfrak{n}(\eta, \nu) \quad \text{and} \quad g_i^\mathfrak{m}(\eta|\ell_\mathfrak{m}, \nu|\ell_\mathfrak{m}) = g_i^\mathfrak{n}(\eta, \nu)|\ell_\mathfrak{m}.
\]

Definition 3.9. We define a function\(^3\) \(\text{ndrk} : M_{\bar{T}, k} \to \text{ON} \cup \{\infty\}\) declaring inductively when \(\text{ndrk}(\mathfrak{m}) \geq \alpha\) (for an ordinal \(\alpha\)).

• \(\text{ndrk}(\mathfrak{m}) \geq 0\) always;

• if \(\alpha\) is a limit ordinal, then
\[
\text{ndrk}(\mathfrak{m}) \geq \alpha \iff (\forall \beta < \alpha)(\text{ndrk}(\mathfrak{m}) \geq \beta);
\]

• if \(\alpha = \beta + 1\), then \(\text{ndrk}(\mathfrak{m}) \geq \alpha\) if and only if for every \(\nu \in u_\mathfrak{m}\) there is \(\mathfrak{n} \in M_{\bar{T}, k}\) such that \(\ell_\mathfrak{n} > \ell_\mathfrak{m}\), \(\mathfrak{m} \sqsubseteq \mathfrak{n}\) and \(\text{ndrk}(\mathfrak{n}) \geq \beta\) and
\[
|\{\eta \in u_\mathfrak{n} : \nu \triangleleft \eta\}| \geq 2;
\]

• \(\text{ndrk}(\mathfrak{m}) = \infty\) if and only if \(\text{ndrk}(\mathfrak{m}) \geq \alpha\) for all ordinals \(\alpha\).

We also define
\[
\text{NDRK}(\bar{T}) = \sup\{\text{ndrk}(\mathfrak{m}) + 1 : \mathfrak{m} \in M_{\bar{T}, k}\}.
\]

Lemma 3.10. 1. The relation \(\sqsubseteq\) is a partial order on \(M_{\bar{T}, k}\).

2. If \(\mathfrak{m}, \mathfrak{n} \in M_{\bar{T}, k}\) and \(\mathfrak{m} \sqsubseteq \mathfrak{n}\) and \(\alpha \leq \text{ndrk}(\mathfrak{n})\), then \(\alpha \leq \text{ndrk}(\mathfrak{m})\).

3. The function \(\text{ndrk}\) is well defined.

4. If \(\mathfrak{m} \in M_{\bar{T}, k}\) and \(\rho \in \omega^2\) then \(\text{ndrk}(\mathfrak{m}) = \text{ndrk}(\mathfrak{m} + \rho)\).

5. If \(\mathfrak{m} \in M_{\bar{T}, k}\), \(\nu \in u_\mathfrak{m}\) and \(\text{ndrk}(\mathfrak{m}) \geq \omega_1\), then there is an \(\mathfrak{n} \in M_{\bar{T}, k}\) such that \(\mathfrak{m} \sqsubseteq \mathfrak{n}\), \(\text{ndrk}(\mathfrak{n}) \geq \omega_1\), and
\[
|\{\eta \in u_\mathfrak{n} : \nu \triangleleft \eta\}| \geq 2.
\]

6. If \(\mathfrak{m} \in M_{\bar{T}, k}\) and \(\infty > \text{ndrk}(\mathfrak{m}) = \beta > \alpha\), then there is \(\mathfrak{n} \in M_{\bar{T}, k}\) such that \(\mathfrak{m} \sqsubseteq \mathfrak{n}\) and \(\text{ndrk}(\mathfrak{n}) = \alpha\).

\(^3\) \text{ndrk} stands for \text{nondisjointness rank.}
7. If \(\text{NDRK}(T) \geq \omega_1 \), then \(\text{NDRK}(T) = \infty \).

8. Assume \(m \in M_{T,k} \) and \(u' \subseteq u_m, |u'| \geq 2 \). Put \(\ell' = \ell_m, h'_i = h_i^m |u^{(2)} \) and \(g'_i = g_i^m |u^{(2)} \) (for \(i < \iota \)), and let \(m|u' = (\ell', u', h', g') \). Then \(m|u' \in M_{T,k} \) and \(\text{nrdk}(m) \leq \text{nrdk}(m|u') \).

Proof. (1) Straightforward.

(2) Induction on \(\alpha \). If \(\alpha = \alpha_0 + 1 \) and \(n' \sqsubset n \) is one of the witnesses used to claim that \(\text{nrdk}(n) \geq \alpha_0 + 1 \), then this \(n' \) can also be used for \(m \). Hence we can argue the successor step of the induction. The limit steps are even easier.

(3) One has to show that if \(\beta < \alpha \) and \(\text{nrdk}(m) \geq \alpha \), then \(\text{nrdk}(m) \geq \beta \).

This can be shown by induction on \(\alpha \): at the successor stage if \(n \) is one of the witnesses used to claim that \(\text{nrdk}(m) \geq \alpha + 1 \), then \(\text{nrdk}(n) \geq \alpha \). By (2) we get \(\text{nrdk}(m) \geq \alpha \) and by the inductive hypothesis \(\text{nrdk}(m) \geq \gamma \) for \(\gamma \leq \alpha \). Limit stages are easy too.

(4) Clear.

(5) Let \(\mathcal{N} \) be the collection of all \(n \in M_{T,k} \) such that \(m \subseteq n \) and \(|\{ \eta \in u_n : \nu < \eta \}| \geq 2 \). If \(\text{nrdk}(n_0) \geq \omega_1 \) for some \(n_0 \in \mathcal{N} \), then we are done. So suppose towards contradiction that there is no such \(n_0 \). Then, as \(\mathcal{N} \) is countable,
\[
\alpha_0 \overset{\text{def}}{=} \sup \{ \text{nrdk}(n) + 1 : n \in \mathcal{N} \} < \omega_1.
\]
But \(\text{nrdk}(m) \geq \alpha_0 + 1 \) implies that \(\text{nrdk}(n_1) \geq \alpha_0 \) for some \(n_1 \in \mathcal{N} \), a contradiction.

(6) Induction on ordinals \(\beta \) (for all \(\alpha < \beta \)). The main point is that if \(\text{nrdk}(m) = \beta \), then for some \(\nu \in u_m \) we cannot find \(n \) as needed for witnessing \(\text{nrdk}(m) \geq \beta + 1 \), but for each \(\gamma < \beta \) we can find \(n \) needed for \(\text{nrdk}(m) \geq \gamma + 1 \). Therefore for each \(\gamma < \beta \) we may find \(n \equiv m \) such that \(\gamma \leq \text{nrdk}(n) < \beta \).

(7) Follows from (6) above.

(8) Clearly \((\ell', u', h', g') \in M_{T,k} \). By a straightforward induction on \(\alpha \) for all \(m \) and restrictions \(m|u' \), one shows that
\[
\alpha \leq \text{nrdk}(m) \Rightarrow \alpha \leq \text{nrdk}(m|u').
\]
\(\square \)
Proposition 3.11. The following conditions are equivalent.

(a) $\text{NDRK}(\bar{T}) \geq \omega_1$.

(b) $\text{NDRK}(\bar{T}) = \infty$.

(c) There is a perfect set $P \subseteq \omega_2$ such that
 $$(\forall \eta, \nu \in P)\left((|B + \eta) \cap (B + \nu)| \geq k\right).$$

(d) In some ccc forcing extension, there is $A \subseteq \omega_2$ of cardinality λ_{ω_1} such that
 $$(\forall \eta, \nu \in A)\left((|B + \eta) \cap (B + \nu)| \geq k\right).$$

Proof. (a) \Rightarrow (b) This is Lemma 3.10(7).

(b) \Rightarrow (c) If $\text{NDRK}(\bar{T}) = \infty$ then there is $m_0 \in M_{\bar{T}, k}$ with $\text{ndrk}(m_0) \geq \omega_1$. Using Lemma 3.10(5) we may now choose a sequence $<m_j : j < \omega> \subseteq M_{\bar{T}, k}$ such that for each $j < \omega$:

(i) $m_j \subseteq m_{j+1}$,

(ii) $\text{ndrk}(m_j) \geq \omega_1$,

(iii) $|\{\eta \in u_{m_{j+1}} : \nu < \eta\} | \geq 2$ for each $\nu \in u_{m_j}$.

Let $P = \{\rho \in \omega^2 : (\forall j < \omega)(\rho|\ell_{m_j} \in u_{m_j})\}$. Clearly, P is a perfect set. For $\eta, \nu \in P, \eta \neq \nu$, let j_0 be the smallest such that $\eta|\ell_m \neq \nu|\ell_m$ and let

$$G_i(\eta, \nu) = \bigcup \{g^{m_j}_i(\eta|\ell_{m_j}, \nu|\ell_{m_j}) : j \geq j_0\} \in \lim\left(T_{h_i^{m_{j_0}}}(\eta|\ell_{m_{j_0}}, \nu|\ell_{m_{j_0}})\right)$$

for $i < \iota$. Then $G_i : P^{(2)} \rightarrow B$ and for $(\eta, \nu) \in P^{(2)}$ and $i < \iota$:

$$\eta + G_i(\eta, \nu) = \nu + G_i(\nu, \eta) \quad \text{and} \quad \eta + G_i(\nu, \eta) = \nu + G_i(\eta, \nu).$$

Moreover, there are no repetitions in the sequence $<G_i(\eta, \nu), G_i(\nu, \eta) : i < \iota>$. Hence, for distinct $\eta, \nu \in P$ we have $|(B + \eta) \cap (B + \nu)| \geq 2\iota = k$.

(c) \Rightarrow (d) Assume (c). Let $\kappa = \beth_{\omega_1}$. By Corollary 2.11 we know that $\models_{\kappa} \lambda_{\omega_1} \leq c$. Remembering Proposition 3.3(1,2), we note that the formula “$P \times P \subseteq \text{std}_k(B)$” is Π^1_1, so it holds in the forcing extension by \mathbb{C}_κ. Now we easily conclude (d).
(d) ⇒ (a) Assume (d) and let \(\mathbb{P} \) be the ccc forcing notion witnessing this assumption, \(G \subseteq \mathbb{P} \) be generic over \(\mathbb{V} \). Let us work in \(\mathbb{V}[G] \).

Let \(\langle \eta_\alpha : \alpha < \lambda_{\omega_1} \rangle \) be a sequence of distinct elements of \(\omega \cdot 2 \) such that

\[
(\forall \alpha < \beta < \lambda_{\omega_1})(||B + \eta_\alpha|| \cap (B + \eta_\beta)| \geq k).
\]

Let \(\tau = \{ R_m : m \in M_{\tilde{T},k} \} \) be a (countable) vocabulary where each \(R_m \) is a \(|u_m| \)-ary relational symbol. Let \(\mathbb{M} = (\lambda_{\omega_1}, \{ R_m^\mathbb{M} \}_{m \in M_{\tilde{T},k}}) \) be the model in the vocabulary \(\tau \), where for \(m = (\ell, u, \bar{h}, \bar{g}) \in M_{\tilde{T},k} \) the relation \(R_m^\mathbb{M} \) is defined by

\[
R_m^\mathbb{M} = \big\{ (\alpha_0, \ldots, \alpha_{|u|-1}) \in (\lambda_{\omega_1})^{|u|} : \eta_{\alpha_0}[\ell], \ldots, \eta_{|u|-1}[\ell] = u \text{ and } \eta_{\alpha_j} + G_i(\alpha_j, \alpha_{j+1}) = \eta_{\alpha_{j+1}} \big\}.
\]

Claim 3.11.1.

1. If \(\alpha_0, \alpha_1, \ldots, \alpha_{j-1} < \lambda_{\omega_1} \) are distinct, \(j \geq 2 \), then for sufficiently large \(\ell < \omega \) there is \(m \in M_{\tilde{T},k} \) such that

\[
\ell_m = \ell, \quad u_m = \{ \eta_{\alpha_0}[\ell], \ldots, \eta_{\alpha_{j-1}}[\ell] \} \quad \text{and} \quad \mathbb{M} \models R_m[\alpha_0, \ldots, \alpha_{j-1}].
\]

2. Assume that \(m \in M_{\tilde{T},k} \), \(j < |u_m| \), \(\alpha_0, \alpha_1, \ldots, \alpha_{|u_m|-1} < \lambda_{\omega_1} \) and \(\alpha^* < \lambda_{\omega_1} \) are all pairwise distinct and such that

\[
\mathbb{M} \models R_m[\alpha_0, \ldots, \alpha_j, \ldots, \alpha_{|u_m|-1}]
\]

and

\[
\mathbb{M} \models R_m[\alpha_0, \ldots, \alpha_{j-1}, \alpha^*, \alpha_{j+1}, \ldots, \alpha_{|u_m|-1}].
\]

Then for every sufficiently large \(\ell > \ell_m \) there is \(n \in M_{\tilde{T},k} \) such that \(m \subseteq n \) and

\[
\ell_n = \ell, \quad u_n = \{ \eta_{\alpha_0}[\ell], \ldots, \eta_{\alpha_{|u_m|-1}}[\ell], \eta_{\alpha^*}[\ell] \}
\]

and

\[
\mathbb{M} \models R_n[\alpha_0, \ldots, \alpha_{|u_m|-1}, \alpha^*].
\]

3. If \(m \in M_{\tilde{T},k} \) and \(\mathbb{M} \models R_m[\alpha_0, \ldots, \alpha_{|u_m|-1}] \), then

\[
\text{rdr}(\{ \alpha_0, \ldots, \alpha_{|u_m|-1} \}, \mathbb{M}) \leq \text{ndrk}(m).
\]
Proof of the Claim. (1) For distinct $j_1, j_2 < j$ let $G_i(\alpha_{j_1}, \alpha_{j_2}) \in B$ (for $i < \iota$) be such that

$$\eta_{\alpha_{j_1}} + G_i(\alpha_{j_1}, \alpha_{j_2}) = \eta_{\alpha_{j_2}} + G_i(\alpha_{j_2}, \alpha_{j_1})$$

and there are no repetitions in the sequence $(G_i(\alpha_{j_1}, \alpha_{j_2}), G_i(\alpha_{j_2}, \alpha_{j_1}) : i < \iota)$. (Remember, $x \in (B + \eta_{\alpha_{j_1}}) \cap (B + \eta_{\alpha_{j_2}})$ if and only if $x + (\eta_{\alpha_{j_1}} + \eta_{\alpha_{j_2}}) \in (B + \eta_{\alpha_{j_1}}) \cap (B + \eta_{\alpha_{j_2}})$, so the choice of $G_i(\alpha_{j_1}, \alpha_{j_2})$ is possible by the assumptions on η_{α}'s.) Suppose that $\ell < \omega$ is such that for any distinct $j_1, j_2 < j$ we have $\eta_{\alpha_{j_1}}|\ell \neq \eta_{\alpha_{j_2}}|\ell$ and there are no repetitions in the sequence $(G_i(\alpha_{j_1}, \alpha_{j_2})|\ell, G_i(\alpha_{j_2}, \alpha_{j_1})|\ell : i < \iota)$. Now let $u = \{\eta_{\alpha_j}|\ell : j' < j\}$, and for $i < \iota$ let $g_i(\eta_{\alpha_j}|\ell, \eta_{\alpha_{j_2}}|\ell) = G_i(\alpha_{j_1}, \alpha_{j_2})|\ell$, and let $h_i(\eta_{\alpha_j}|\ell, \eta_{\alpha_{j_2}}|\ell) < \omega$ be such that $G_i(\alpha_{j_1}, \alpha_{j_2}) \in \lim \{T_i(\eta_{\alpha_j}|\ell, \eta_{\alpha_{j_2}}|\ell)\}$. This defines $m = (\ell, u, \bar{h}, \bar{g}) \in M_{T, k}$ and easily $M \models R_m[\alpha_0, \ldots, \alpha_{j-1}]$.

(2) An obvious modification of the argument above.

(3) By induction on β we show that for every $m \in M_{T, k}$ and all $\alpha_0, \ldots, \alpha_{|u_m|-1} < \lambda_{\omega_1}$ such that $M \models R_m[\alpha_0, \ldots, \alpha_{|u_m|-1}]$:

$$\beta \leq \text{rk}(\{\alpha_0, \ldots, \alpha_{|u_m|-1}\}, M)$$

implies $\beta \leq \text{nrdr}(m)$.

Steps $\beta = 0$ and β is limit:

Step $\beta = \gamma + 1$: Suppose $m \in M_{T, k}$ and $\alpha_0, \ldots, \alpha_{|u_m|-1} < \lambda_{\omega_1}$ are such that $M \models R_m[\alpha_0, \ldots, \alpha_{|u_m|-1}]$ and $\gamma + 1 \leq \text{rk}(\{\alpha_0, \ldots, \alpha_{|u_m|-1}\}, M)$. Let $\nu \in u_m$, so $\nu = \eta_{\alpha_j}|\ell_m$ for some $j < |u_m|$. Since

$$\gamma + 1 \leq \text{rk}(\{\alpha_0, \ldots, \alpha_{|u_m|-1}\}, M)$$

we may find $\alpha^* \in \lambda_{\omega_1} \setminus \{\alpha_0, \ldots, \alpha_{|u_m|-1}\}$ such that

$$M \models R_m[\alpha_0, \ldots, \alpha_{j-1}, \alpha^*, \alpha_{j+1}, \ldots, \alpha_{|u|-1}]$$

and $\text{rk}(\{\alpha_0, \ldots, \alpha_{|u|-1}, \alpha^*\}, M) \geq \gamma$. Taking sufficiently large ℓ we may use clause (2) to find $n \in M_{T, k}$ such that $m \subseteq n$, $\ell_n = \ell$ and $M \models R_n[\alpha_0, \ldots, \alpha_{|u_m|-1}, \alpha^*]$ and $|\{\eta \in u_n : \nu < \eta\}| \geq 2$. By the inductive hypothesis we have also $\gamma \leq \text{nrdr}(n)$. Now we may easily conclude that $\gamma + 1 \leq \text{nrdr}(m)$. \qed
By the definition of λ_{ω_1},
\[(\circ) \sup \{\text{rk}(w, M) : \emptyset \neq w \in [\lambda_{\omega_1}]^{<\omega}\} \geq \omega_1\]

Now, suppose that $\beta < \omega_1$. By (\circ), there are distinct $\alpha_0, \ldots, \alpha_{j-1} < \lambda_{\omega_1}$, $j \geq 2$, such that $\text{rk}(\{\alpha_0, \ldots, \alpha_{j-1}\}, M) \geq \beta$. By Claim 3.11.1(1) we may find $m \in M^\omega_{\bar{T}}$ such that $M \models R_m[\alpha_0, \ldots, \alpha_{j-1}]$. Then by Claim 3.11.1(3) we also have $\text{ndrk}(m) \geq \beta$. Consequently, $\text{NDRK}(\bar{T}) \geq \omega_1$.

All the considerations above where carried out in $V[G]$. However, the rank function ndrk is absolute, so we may also claim that in V we have $\text{NDRK}(\bar{T}) \geq \omega_1$. \hfill \Box

Corollary 3.12. Assume that $\varepsilon \leq \omega_1$ and $\text{Pr}_\varepsilon(\lambda)$. If there is $A \subseteq \omega^2$ of cardinality λ such that
\[\forall \eta, \nu \in A \left(|(B + \eta) \cap (B + \nu)| \geq k \right),\]
then $\text{NDRK}(\bar{T}) \geq \varepsilon$.

Proof. This is essentially shown by the proof of the implication $(d) \Rightarrow (a)$ of Proposition 3.11. \hfill \Box

4. The forcing

In this section we construct a forcing notion adding a sequence \bar{T} of sub-trees of $\omega^>2$ such that $\text{NDRK}(\bar{T}) < \omega_1$. The sequence \bar{T} will be added by finite approximations, so it will be convenient to have finite version of Definition 3.5.

Definition 4.1. Assume that
- $2 \leq \iota < \omega$, $k = 2\iota$, and $0 < n, M < \omega$,
- $\bar{t} = \langle t_m : m < M \rangle$, and each t_m is a sub-tree of $n^\geq 2$ in which all terminal branches are of length n,
- $T_j \subseteq \omega^>2$ (for $j < \omega$) are trees with no maximal nodes, $\bar{T} = \langle T_j : j < \omega \rangle$ and $t_m = T_m \cap n^\geq 2$ for $m < M$,
- $M^\omega_{\bar{T}, k}$ is defined as in Definition 3.5.
1. Let \(M_{i,k}^n \) consist of all tuples \(m = (\ell, u, h, g) \in M_{T,k} \) such that \(\ell \leq n \) and \(\text{rng}(h^m) \subseteq M \) for each \(i < \ell \).

2. Assume \(m, n \in M_{i,k}^n \). We say that \(m, n \) are essentially the same \((m \equiv* n \text{ in short}) \) if and only if:

- \(\ell = \ell, u = u \) and
- for each \((\eta, \nu) \in (u, u)^{(2)} \) we have
 \[
 \{ \{g_i^m(\eta, \nu), g_i^m(\nu, \eta)\} : i < \ell \} = \{ \{g_i^n(\eta, \nu), g_i^n(\nu, \eta)\} : i < \ell \},
 \]
 and for \(i, j < \ell \):
 - if \(g_i^m(\eta, \nu) = g_j^m(\eta, \nu) \), then \(h_i^m(\eta, \nu) = h_j^m(\eta, \nu) \).
 - if \(g_i^m(\eta, \nu) = g_j^m(\nu, \eta) \), then \(h_i^m(\eta, \nu) = h_j^m(\nu, \eta) \).

3. Assume \(m, n \in M_{i,k}^n \). We say that \(n \) essentially extends \(m \) \((m \sqsubset^* n \text{ in short}) \) if and only if:

- \(\ell \leq \ell, u = \{\eta|\ell : \eta \in u\} \), and
- for each \((\eta, \nu) \in (u, u)^{(2)} \) such that \(\eta|\ell \neq \nu|\ell \) we have
 \[
 \{ \{g_i^m(\eta|\ell, \nu|\ell), g_i^m(\nu|\ell, \eta|\ell)\} : i < \ell \} \]
 \[
 = \{ \{g_i^n(\eta, \nu)|\ell, g_i^n(\nu, \eta)|\ell\} : i < \ell \},
 \]
 and for \(i, j < \ell \):
 - if \(g_i^m(\eta|\ell, \nu|\ell) = g_j^m(\eta, \nu)|\ell \), then \(h_i^m(\eta|\ell, \nu|\ell) = h_j^m(\eta, \nu) \).
 - if \(g_i^m(\eta|\ell, \nu|\ell) = g_j^m(\nu, \eta)|\ell \), then \(h_i^m(\eta|\ell, \nu|\ell) = h_j^m(\nu, \eta) \).

Observation 4.2. If \(m \in M_{i,k}^n \) and \(\rho \in \ell_m 2 \), then \(m + \rho \in M_{i,k}^n \) (remember Definition 3.6).

Lemma 4.3. Let \(0 < \ell < \omega \) and let \(B \subseteq \ell^2 \) be a linearly independent set of vectors \((in \ell^2, +) \text{ over } (2, +2, \cdot2)) \).

1. If \(A \subseteq \ell^2, |A| \geq 5 \) and \(A + A \subseteq B + B \), then for a unique \(x \in \ell^2 \) we have \(A + x \subseteq B \).

2. Let \(b^* \in B \). Suppose that \(\rho_i^0, \rho_i^1 \in (B \cup (b^* + B)) \setminus \{0, b^*\} \) \((for i < 3) \) are such that
 (a) there are no repetitions in \(\{\rho_i^0, \rho_i^1 : i < 3\} \), and
\(\rho_i^0 + \rho_i^1 = \rho_j^0 + \rho_j^1 \) for \(i < j < 3 \).

Then \(\{\rho_i^0, \rho_i^1\} : i < 3 \subseteq \{b, b + b^*\} : b \in B, \ b \neq b^*\} \).

Proof. Easy, for (1) see e.g. [5, Lemma 2.3]. \(\square \)

Theorem 4.4. Assume \(\text{NPr}_{\omega_1}(\lambda) \) and let \(3 \leq i < \omega \). Then there is a ccc forcing notion \(\mathbb{P} \) of size \(\lambda \) such that

\(\mathbb{P} \models \text{"for some } \Sigma_0^0 \text{n-pots-set } B \subseteq \omega_2 \text{ there is a sequence } \langle \eta_\alpha : \alpha < \lambda \rangle \text{ of distinct elements of } \omega_2 \text{ such that } \left| (\eta_\alpha + B) \cap (\eta_\beta + B) \right| \geq 2^\iota \text{ for all } \alpha, \beta < \lambda. \)

Proof. If \(Q \subseteq \omega_2 \) is a countable infinite subgroup of \(\omega_2 \) then \(Q \) is n-pots but \(Q \) has \(\omega \)-many pairwise \(\omega \)-nondisjoint translations. So we may assume that \(\lambda \) is uncountable.

Fix a countable vocabulary \(\tau = \{R_{n, \zeta} : n, \zeta < \omega\} \), where \(R_{n, \zeta} \) is an \(n \)-ary relational symbol (for \(n, \zeta < \omega \)). By the assumption on \(\lambda \), we may fix a model \(\mathbb{M} = (\lambda, \{R_{n, \zeta}^\mathbb{M}\}_{n, \zeta < \omega}) \) in the vocabulary \(\tau \) with the universe \(\lambda \) and an ordinal \(\alpha^* < \omega_1 \) such that:

\((\otimes)_a \) for every \(n \) and a quantifier free formula \(\varphi(x_0, \ldots, x_{n-1}) \in \mathcal{L}(\tau) \) there is \(\zeta < \omega \) such that for all \(a_0, \ldots, a_{n-1} \in \lambda \),

\[\mathbb{M} \models \varphi[a_0, \ldots, a_{n-1}] \Leftrightarrow R_{n, \zeta}[a_0, \ldots, a_{n-1}], \]

\((\otimes)_b \sup \{\text{rk}(v, \mathbb{M}) : \emptyset \neq v \in [\lambda]^{<\omega}\} < \alpha^* \),

\((\otimes)_c \) the rank of every singleton is at least 0.

For a nonempty finite set \(v \subseteq \lambda \) let \(\text{rk}(v) = \text{rk}(v, \mathbb{M}) \), and let \(\zeta(v) < \omega \) and \(k(v) < |v| \) be such that \(R_{|v|, \zeta(v)}^v, k(v) \) witness the rank of \(v \). Thus letting \(\{a_0, \ldots, a_k, \ldots a_{n-1}\} \) be the increasing enumeration of \(v \) and \(k = k(v) \) and \(\zeta = \zeta(v) \), we have

\((\otimes)_d \) if \(\text{rk}(v) \geq 0 \), then \(\mathbb{M} \models R_{n, \zeta}[a_0, \ldots, a_k, \ldots a_{n-1}] \) but there is no \(a \in \lambda \setminus v \) such that

\(\text{rk}(v \cup \{a\}) \geq \text{rk}(v) \) and \(\mathbb{M} \models R_{n, \zeta}[a_0, \ldots, a_{k-1}, a, a_{k+1}, \ldots, a_{n-1}] \).
If $\text{rk}(v) = -1$, then $\mathbb{M} \models R_{n, \zeta}[a_0, \ldots, a_k, \ldots, a_{n-1}]$ but the set
\[
\{ a \in \lambda : \mathbb{M} \models R_{n, \zeta}[a_0, \ldots, a_{k-1}, a, a_{k+1}, \ldots, a_{n-1}] \}
\]
is countable.

Without loss of generality we may also require that (for $\zeta = \zeta(v)$, $n = |v|$)
\[(\circ)_f \text{ for every } b_0, \ldots, b_{n-1} < \lambda \]
\[
\text{if } \mathbb{M} \models R_{n, \zeta}[b_0, \ldots, b_{n-1}] \text{ then } b_0 < \ldots < b_{n-1}.
\]

Now we will define a forcing notion \mathbb{P}. A condition p in \mathbb{P} is a tuple
\[
(w^p, n^p, M^p, \bar{\eta}^p, \bar{t}^p, \bar{r}^p, \bar{h}^p, \bar{g}^p, \mathcal{M}^p) = (w, n, M, \bar{\eta}, \bar{t}, \bar{r}, \bar{h}, \bar{g}, \mathcal{M})
\]
such that the following demands $(\ast)_1 - (\ast)_{11}$ are satisfied.

\[
(\ast)_1 \, w \in [\lambda]^{<\omega}, |w| \geq 5, 0 < n, M < \omega.
\]

\[
(\ast)_2 \, \bar{\eta} = \langle \eta_\alpha : \alpha \in w \rangle \text{ is a sequence of linearly independent vectors in } n^2 \text{ (over the field } \mathbb{Z}_2); \text{ so in particular } \eta_\alpha \in n^2 \text{ are pairwise distinct non-zero sequences (for } \alpha \in w).
\]

\[
(\ast)_3 \, \bar{t} = \langle t_m : m < M \rangle, \text{ where } \emptyset \neq t_m \subseteq n^2 \text{ for } m < M \text{ is a tree in which all terminal branches are of length } n \text{ and } t_m \cap t_{m'} \cap n^2 = \emptyset \text{ for } m < m' < M.
\]

\[
(\ast)_4 \, \bar{r} = \langle r_m : m < M \rangle, \text{ where } 0 < r_m \leq n \text{ for } m < M.
\]

\[
(\ast)_5 \, \bar{h} = \langle h_i : i < \iota \rangle, \text{ where } h_i : w^{(2)} \to M.
\]

\[
(\ast)_6 \, \bar{g} = \langle g_i : i < \iota \rangle, \text{ where } g_i : w^{(2)} \to \bigcup_{m < M} (t_m \cap n^2), \text{ and } g_i(\alpha, \beta) \in t_{h_i(\alpha, \beta)} \text{ and } \eta_\alpha + g_i(\alpha, \beta) = \eta_\beta + g_i(\beta, \alpha) \text{ for } (\alpha, \beta) \in w^{(2)} \text{ and } i < \iota.
\]

\[
(\ast)_7 \text{ There are no repetitions in the list } \langle g_i(\alpha, \beta) : i < \iota, (\alpha, \beta) \in w^{(2)} \rangle.
\]

\[
(\ast)_8 \, \mathcal{M} \text{ consists of all those } m \in \mathbb{M}_{\ell, k}^n \text{ (see Definition 4.1) that for some } \ell_*, w_* \text{ we have}
\]
To define the order \leq of \mathbb{P} we declare for $p, q \in \mathbb{P}$ that $p \leq q$ if and only if

- $w^p \subseteq w^q$, $n^p \leq n^q$, $M^p \leq M^q$, and
- $t^p_m = t^q_m \cap n^{p\geq2}$ and $r^p_m = r^q_m$ for all $m < M^p$, and
\[\eta^p_\alpha \leq \eta^q_\alpha \text{ for all } \alpha \in w^p, \text{ and}\]
\[h^q_i|(w^p)^{(2)} = h^p_i \text{ and } g^p_i(\alpha, \beta) \leq g^q_i(\alpha, \beta) \text{ for } i < \iota \text{ and } (\alpha, \beta) \in (w^p)^{(2)}.\]

Claim 4.4.1. Assume \(p = (w, n, M, \bar{h}, \bar{t}, \bar{h}, \bar{g}, \bar{M}) \in \mathbb{P}. \) If \(m \in M^p_{i,k} \) is such that \(\ell_m = n \) and \(|u_m| \geq 5, \) then for some \(\rho \in n^2 \) and \(n \in \mathcal{M} \) we have \((m + \rho) \not{\equiv} n.\)

Proof of the Claim. Let \(m \in M^p_{i,k} \) be such that \(\ell_m = n. \) It follows from Definition 3.5(d,e) and clauses \((*)_6 + (*)_{11} \) that

\[(\square) \text{ for every } (\nu, \eta) \in (u_m)^{(2)} \text{ there is } (\alpha, \beta) \in w^{(2)} \text{ such that } \nu + \eta = \eta_\alpha + \eta_\beta.\]

By Lemma 4.3 for some \(\rho \) we have \(u_m + \rho \subseteq \{\eta_\alpha : \alpha \in w\}. \) Let \(w_0 = \{\alpha \in w : \eta_\alpha + \rho \in u_m\} \) and \(n = m^p(n, w_0) \in \mathcal{M}. \) Using clauses \((*)_{11} \) and \((*)_6 \) we easily conclude \((m + \rho) \not{\equiv} n. \) (Note that since \(t_m \cap t_{m'} \cap n^2 = \emptyset \) for \(m < m' < M, \) \(h^m_i(\eta, \nu) \) is determined by \(g^m_i(\eta, \nu).\)) \(\square\)

Claim 4.4.2.

1. \(\mathbb{P} \neq \emptyset \) and \((\mathbb{P}, \leq) \) is a partial order.

2. For each \(\beta < \lambda \) and \(n_0, M_0 < \omega \) the set

\[D^{n_0,M_0}_{\beta} = \{p \in \mathbb{P} : n^p > n_0 \land M^p > M_0 \land \beta \in w^p\}\]

is open dense in \(\mathbb{P}.\)

Proof of the Claim. (1) Straightforward.

(2) Let \(p \in \mathbb{P}, \beta \in \lambda \setminus w^p. \) Put \(N = |w^p| \cdot \iota + 2. \)

We will define a condition \(q \in \mathbb{P} \) such that \(q \geq p \) and

\[w^q = w^p \cup \{\beta\}, \quad n^q = n^p + N > n^p + 1, \quad M^q = M^p + N - 2 > M^p + 1.\]

For \(\alpha \in w^p \) we set \(\eta^q_\alpha = \eta^p_\alpha \upharpoonright (0, \ldots, 0) \) and we also let

\[\eta^q_\beta = (0, \ldots, 0) \upharpoonright (1, \ldots, 1).\]

Next, if \((\alpha_0, \alpha_1) \in (w^p)^{(2)}, \) then for all \(i < \iota\)

\[h^q_i(\alpha_0, \alpha_1) = h^p_i(\alpha_0, \alpha_1) \quad \text{and} \quad g^q_i(\alpha_0, \alpha_1) = g^p_i(\alpha_0, \alpha_1) \upharpoonright (0, \ldots, 0).\]

If \(\alpha \in w^p \) and \(j = |w^p \cap \alpha|, \) then for \(i < \iota:\)
Demands \((\ast \nexists \beta/\mu \gamma \cdot) \) and \(\beta \in w_0 \cup w_1 \)

Then letting \(\ell^* = \min(\ell, n^\beta) \) and \(\rho^* = \rho|\ell^* \) we see that \(\mathfrak{m}^\beta(\ell^*, w_0) \doteq \mathfrak{m}^\beta(\ell^*, w_1) + \rho^* \) (and both belong to \(\mathcal{M}^\beta \)). Hence clause \((*)_9 \) for \(p \) applies.

Case 2: \(\beta \in w_0 \cup w_1 \)

Say, \(\beta \in w_0 \). If \(\alpha \in w_0 \setminus \{\beta\} \), then \(h_1^\gamma(\alpha, \beta) = h_1^\gamma(\beta, \alpha) \geq M^\beta \) and \(r_1^\gamma(\alpha, \beta) = n^\theta \). Consequently, \(\ell = n^\gamma \). Moreover,

\[
(\gamma, \delta) \in (w^\gamma)^{(2)} \land h_j^\gamma(\gamma, \delta) = h_j^\gamma(\alpha, \beta) \implies \{\gamma, \delta\} = \{\alpha, \beta\}.
\]

Therefore, \(\beta \in w_1 \) and \(w_1 = w_0 \) and since \(|w_1| \geq 5 \), the linear independence of \(\eta \) implies \(\rho = 0 \).
RE (\(*)_{10}\) : Concerning clause (*)_{10}, suppose that \(m^q(\ell_0, w_0), m^q(\ell_1, w_1) \in M^q, \alpha \in w_0, |\alpha \cap w_0| = k(w_0), \text{rk}(w_0) = -1, \) and \(m^q(\ell_0, w_0) \not\subset m^q(\ell_1, w_1).\) Assume towards contradiction that there are \(\alpha_0, \alpha_1 \in w_1\) such that

\[
\eta^q_{\alpha_0} \upharpoonright \ell_1 \neq \eta^q_{\alpha_1} \upharpoonright \ell_1 \land \eta^q_{\alpha_0} \upharpoonright \ell_0 < \eta^q_{\alpha_1} \upharpoonright \ell_0 < \eta^q_{\alpha_1}.
\]

Suppose \(\beta \in w_0 \cup w_1.\) Then looking at the function \(h^q_i\) in a manner similar to considerations for clause (*)_{9} we get \(\beta \in w_0 \cap w_1.\) Let \(\beta' \in w_0 \setminus \{\beta\}.\) Then \(h^q_i(\beta, \beta') \geq M^p\) and hence \(r^q_{h^0(\beta, \beta')} = n^q = \ell_0 = \ell_1,\) contradicting our assumptions. Therefore \(\beta \notin w_0 \cup w_1.\) But then we immediately get contradiction with clause (*)_{10} for \(p.\)

RE (*)_{11} : Let us argue that (*)_{11} is satisfied as well and for this suppose that \(\rho^0_i, \rho^1_i \in \bigcap_{m < M^q} (t_m \cap n^q 2) (\text{for } i < \iota)\) are such that

(a) there are no repetitions in \(\langle \rho^0_i, \rho^1_i : i < \iota \rangle,\) and

(b) \(\rho^0_i + \rho^1_i = \rho^0_j + \rho^1_j\) for \(i < j < \iota.\)

Clearly, if

(\(\circ\))_{1} all \(\rho^0_i, \rho^1_i\) are from \(\bigcup_{m < M^p} t_m,\)

then we may use the condition (*)_{11} for \(p\) and conclude that for some \(\alpha_0, \alpha_1 \in w^p\) we have

\[
\{\{\rho^0_i, \rho^1_i\} : i < \iota\} = \{\{g_i(\alpha_0, \alpha_1), g_i(\alpha_1, \alpha_0)\} : i < \iota\}.
\]

Now note that if \(\rho_0, \rho_1, \rho_2, \rho_3 \in \bigcup_{m < M^q} (t_m \cap n^q 2), \rho_0 + \rho_1 = \rho_2 + \rho_3\) and \(\rho_0 \in \bigcup_{m < M^p} (t_m \cap n^q 2)\) but \(\rho_1 \notin \bigcup_{m < M^p} (t_m \cap n^q 2),\) then \(\{\rho_0, \rho_1\} = \{\rho_2, \rho_3\}.\) Hence easily, if (\(\circ\))_{1} fails we must have

(\(\circ\))_{2} \(\rho^0_i, \rho^1_i \in \bigcup_{m = M^p} (t_m \cap n^q 2)\) for \(i < \iota.\)

But then necessarily

\[
\{\{\rho^0_i[n^p, n^q], \rho^1_i[n^p, n^q]\} : i < \iota\} \subseteq \{\{g_i(\alpha, \beta)[n^p, n^q], g_i(\beta, \alpha)[n^p, n^q]\} : i < \iota, \alpha \in w^p\}.
\]
procedure we may find an uncountable set A demands ($\bar{\eta}_\alpha$)

\[
\{\{\rho_i^0, \rho_i^1\} : i < \iota\} = \{\{g_i(\alpha, \beta), g_i(\beta, \alpha)\} : i < \iota\}.
\]

One easily verifies that the condition q is stronger than p. \qed

Claim 4.4.3. The forcing notion P has the Knaster property.

Proof of the Claim. Suppose that $\langle p_\xi : \xi < \omega_1 \rangle$ is a sequence of pairwise distinct conditions from P and let

\[
p_\xi = (w_\xi, n_\xi, M_\xi, \bar{n}_\xi, \bar{t}_\xi, \bar{r}_\xi, \bar{h}_\xi, g_\xi, M_\xi)
\]

where $\bar{n}_\xi = \langle n_\alpha^\xi : \alpha \in w_\xi\rangle$, $\bar{t}_\xi = \langle t_m^\xi : m < M_\xi\rangle$, $\bar{r}_\xi = \langle r_m^\xi : m < M_\xi\rangle$, and $\bar{h}_\xi = \langle h_i^\xi : i < \iota\rangle$, $g_\xi = \langle g_i^\xi : i < \iota\rangle$. By a standard Δ–system cleaning procedure we may find an uncountable set $A \subseteq \omega_1$ such that the following demands $(*)_{12} - (*)_{15}$ are satisfied.

$(*)_{12}$ \{\(w_\xi : \xi \in A\) forms a Δ–system.

$(*)_{13}$ If $\xi, \varsigma \in A$, then $|w_\xi| = |w_\varsigma|$, $n_\xi = n_\varsigma$, $M_\xi = M_\varsigma$, and $t_m^\xi = t_m^\varsigma$ and $r_m^\xi = r_m^\varsigma$ (for $m < M_\xi$).

$(*)_{14}$ If $\xi < \varsigma$ are from A and $\pi : w_\xi \longrightarrow w_\varsigma$ is the order isomorphism, then

(a) $\pi(\alpha) = \alpha$ for $\alpha \in w_\xi \cap w_\varsigma$,

(b) if $\emptyset \neq v \subseteq w_\xi$, then $rk(v) = rk(\pi[v])$, $\zeta(v) = \zeta(\pi[v])$ and $k(v) = k(\pi[v])$,

(c) $\eta_\alpha^\xi = \eta_{\pi(\alpha)}$ (for $\alpha \in w_\xi$),

(d) $g_i(\alpha, \beta) = g_i(\pi(\alpha), \pi(\beta))$ and $h_i(\alpha, \beta) = h_i(\pi(\alpha), \pi(\beta))$ for $(\alpha, \beta) \in (w_\xi)^{(2)}$ and $i < \iota$.

and

$(*)_{15}$ $M_\xi = M_\varsigma$ (this actually follows from the previous demands).

Following the pattern of Claim 4.4.2(2) we will argue that for distinct ξ, ς from A the conditions p_ξ, p_ς are compatible. So let $\xi, \varsigma \in A$, $\xi < \varsigma$ and let $\pi : w_\xi \longrightarrow w_\varsigma$ be the order isomorphism. We will define $q =$
(w, n, M, \eta, \bar{\eta}, \bar{r}, \bar{r}, \bar{h}, \bar{g}, M) where \eta = \langle \eta_0 : \alpha \in w \rangle, \bar{\eta} = \langle t_m : m < M \rangle, \
\bar{r} = \langle r_m : m < M \rangle, and \bar{h} = \langle h_i : i < \iota \rangle, \bar{g} = \langle g_i : i < \iota \rangle.

Let w_\xi \cap w_\zeta = \{\alpha_0, \ldots, \alpha_{k-1}\}, w_\xi \setminus w_\zeta = \{\beta_0, \ldots, \beta_{\ell-1}\} and w_\zeta \setminus w_\xi =
\{\gamma_0, \ldots, \gamma_{\ell-1}\} be the increasing enumerations.

We set \(N_0 = \iota \cdot \ell(\ell + k) + \iota \cdot \frac{\ell(\ell - 1)}{2} + 1, N = N_0 + \ell + 1, and we define
\((*)_{16} \ w = w_\xi \cup w_\zeta, n = n_\xi + N, and M = M_\xi + 1; \)
\((*)_{17} \ \eta_\alpha = \eta_\alpha^N(0, \ldots, 0) \) for \(\alpha \in w_\xi \) and we also let for \(c < \ell \)
\[\eta_{\gamma_c} = \eta_{\gamma_c}^N(0) \cap (1, 1) \cap (0, \ldots, 0) \cap (1, \ldots, 1).\]

Next we are going to define \(h_i(\alpha, \beta) \) and \(g_i(\alpha, \beta) \) for \((\alpha, \beta) \in w^{(2)} \). For \(d < N_0 \) let
\[\nu_d = \langle 0, \ldots, 0 \rangle \cap (1) \cap (0, \ldots, 0) \in N_{0, 2}, \text{ and } \nu_d^* = 1 + \nu_d \in N_{0, 2}\]
and note that \(\{\nu_d : d < N_0 - 1 \} \cup \{1\} \) are linearly independent in \(N_{0, 2} \). Fix a bijection
\[\Theta : (k \times \ell \times \ell \times \{0\}) \cup (\{(a, b) \in \ell^2 : a < b \} \times \ell \times \{1\}) \cup (\ell \times \ell \times \ell \times \{2\}) \rightarrow N_0 - 1\]
and define \(h_i, g_i \) as follows.

\((*)_{18}^a \) If \((\alpha, \beta) \in (w_\xi)^{(2)} \) and \(i < \iota \), then
\[h_i(\alpha, \beta) = h_i^\xi(\alpha, \beta) \) and \(g_i(\alpha, \beta) = g_i^\xi(\alpha, \beta)^N(0, \ldots, 0).\]

\((*)_{18}^b \) If \(a < k, c < \ell \) and \(i < \iota \), then \(h_i(\alpha_a, \gamma_c) = h_i^\xi(\alpha_a, \gamma_c) \) and \(h_i(\gamma_c, \alpha_a) = h_i^\xi(\gamma_c, \alpha_a) \), and
\[g_i(\alpha_a, \gamma_c) = g_i^\xi(\alpha_a, \gamma_c)^\ell(1) \cap (1) \cap (0, \ldots, 0) \) for \(\Theta(a, c, i, 0) = (\ell, 1, \ldots, 1, \ell) \) and
\[g_i(\gamma_c, \alpha_a) = g_i^\xi(\gamma_c, \alpha_a)^\ell(1) \cap (1) \cap (0, \ldots, 0) \cap (1, \ldots, 1).\]
If \(b < c < \ell \) and \(i < \iota \), then \(h_i(\gamma_b, \gamma_c) = h_i^\xi(\gamma_b, \gamma_c) \), \(h_i(\gamma_c, \gamma_b) = h_i^\xi(\gamma_c, \gamma_b) \), and
\[
g_i(\gamma_b, \gamma_c) = g_i^\xi(\gamma_b, \gamma_c)^-1(1)^\sim(0, \ldots, 0)^\sim(1, \ldots, 1)^- = b \quad \text{and} \quad g_i(\gamma_c, \gamma_b) = g_i^\xi(\gamma_c, \gamma_b)^-1(1)^\sim(0, \ldots, 0)^\sim(1, \ldots, 1)^- = c
\]
(note: \(\nu_\Theta \) not \(\nu_\Theta^* \)).

If \(b < \ell \), \(c < \ell \) and \(b \neq c \) and \(i < \iota \), then \(h_i(\beta_b, \gamma_c) = h_i(\gamma_c, \beta_b) = M_\xi = M_\zeta \), and
\[
g_i(\beta_b, \gamma_c) = g_i^\xi(\beta_b, \beta_c)^-1(1)^\sim(0, \ldots, 0)^\sim(1, \ldots, 1)^- = c \quad \text{and} \quad g_i(\gamma_c, \beta_b) = g_i^\xi(\gamma_c, \gamma_b)^-1(1)^\sim(0, \ldots, 0)^\sim(1, \ldots, 1)^- = c
\]

If \(b < \ell \) and \(i < \iota \), then \(h_i(\beta_b, \gamma_b) = h_i(\gamma_b, \beta_b) = M_\xi = M_\zeta \), and
\[
g_i(\beta_b, \gamma_b) = \eta^\xi_{\beta_b}^- (1)^\sim(0, \ldots, 0)^\sim(1, \ldots, 1)^- = b \quad \text{and} \quad g_i(\gamma_b, \beta_b) = \eta^\xi_{\gamma_b}^- (1)^\sim(0, \ldots, 0)^\sim(1, \ldots, 1)^- = \ell
\]

We also set:

\[(*)_{19} \quad r_m = r_m^\xi \quad \text{for } m < M_\xi, \quad r_{M_\xi} = n \quad \text{and if } m < M_\xi, \text{ then} \]
\[
t_m = \{ \eta \in n^{\geq 2} : \eta[\eta_{\xi} \in t_m^\xi \cap (\forall j < n)(n \leq j < |\eta| \Rightarrow \eta(j) = 0) \} \cup \{ g_i(\delta, \varepsilon)|n' : (\delta, \varepsilon) \in w^{(2)}, i < \iota, \text{ and } n' \leq n \text{ and } h_i(\delta, \varepsilon) = m \}
\]
and
\[
t_{M_\xi} = \{ g_i(\delta, \varepsilon)|n' : (\delta, \varepsilon) \in w^{(2)}, i < \iota, \text{ and } n' \leq n \text{ and } h_i(\delta, \varepsilon) = M_\xi \}.
\]

Now letting \(\mathcal{M} \) be defined by \((*)_8 \) we claim that
\[
q = (w, n, M, \bar{n}, \bar{t}, \bar{r}, \bar{h}, \bar{g}, \mathcal{M}) \in \mathbb{P}.
\]

Demands \((*)_1 - (*)_8 \) are pretty straightforward.
RE (⑨) : To justify clause (⑨)9, suppose that \(m(\ell, w'), m(\ell, w'') \in \mathcal{M}, \) \(\rho \in \ell \) and \(m(\ell, w') \div m(\ell, w'') + \rho, \) and consider the following three cases.

CASE 1: \(w' \subseteq w_\xi \)
Then for each \((\delta, \varepsilon) \in (w')^{(2)}\) we have \(h_i(\delta, \varepsilon) < M_\xi, \) so this also holds for \((\delta, \varepsilon) \in (w'')^{(2)}\). Consequently, either \(w'' \subseteq w_\xi \) or \(w'' \subseteq w_\zeta. \)

If \(w'' \subseteq w_\xi, \) then let \(\ell = \min(\ell, n_\xi) \) and consider \(m^{p_\xi}(w', \ell'), m^{p_\xi}(w'', \ell') \in \mathcal{M}_{\xi}. \) Using clause (⑨)9 for \(p_\xi \) we immediately obtain the desired conclusion.

If \(w'' \subseteq w_\zeta, \) then we let \(\ell = \min(\ell, n_\xi) \) and we consider \(m^{p_\xi}(w', \ell') \) and \(m^{p_\xi}(\pi^{-1}[w''], \ell') \) (both from \(\mathcal{M}_{\xi}. \) By (⑨)14, clause (⑨)9 for \(p_\xi \) applies to them and we get

- \(\text{rk}(w') = \text{rk}(\pi^{-1}[w'']), \) \(\zeta(w') = \zeta(\pi^{-1}[w'']), \) \(k(w') = k(\pi^{-1}[w'']) \)

- if \(\delta \in w', \varepsilon \in \pi^{-1}[w''] \) are such that \(|\delta \cap w'| = k(w') = k(\pi^{-1}[w'']) = |\varepsilon \cap \pi^{-1}[w'']|, \) then \(\eta^p_{\delta} |\ell'| + \rho = \eta^p_{\varepsilon} |\ell'. \)

By (⑨)14 this immediately implies the desired conclusion.

CASE 2: \(w' \subseteq w_\zeta \)
Same as the previous case, just interchanging \(\xi \) and \(\zeta. \)

CASE 3: \(w' \setminus w_\xi \neq \emptyset \neq w' \setminus w_\zeta \)
Then for some \((\delta, \varepsilon) \in (w')^{(2)}\) we have \(h_i(\delta, \varepsilon) = M_\zeta, \) so necessarily \(\ell = r_{M_\zeta} = n. \) Hence \(\{\eta_\alpha : \alpha \in w'\} = \{\eta_\alpha + \rho : \alpha \in w''\} \) and since \(|w'| \geq 5, \) the linear independence of \(\bar{\eta} \) implies \(\rho = 0 \) and \(w' = w'' \) and the desired conclusion follows.

RE (⑩) : Let us prove clause (⑩)10 now.

Suppose that \(m(\ell_0, w'), m(\ell_1, w'') \in \mathcal{M}, \) \(\delta \in w', \) \(|\delta \cap w'| = k(w'), \) \(\text{rk}(w') = -1, \) and \(m(\ell_0, w') \supseteq^* m(\ell_1, w''). \) Assume towards contradiction that there are \(\varepsilon_0, \varepsilon_1 \in w'' \) such that

\[
(\otimes)_0 \eta_{\varepsilon_0} |\ell_1 \neq \eta_{\varepsilon_1} |\ell_1 \text{ and } \eta_{\delta} |\ell_0 \leq \eta_{\varepsilon_0} \text{ and } \eta_{\delta} |\ell_0 < \eta_{\varepsilon_1}.
\]

Without loss of generality \(|w''| = |w'| + 1 \geq 6. \)

Since we must have \(\ell_0 < n, \) for no \(\alpha, \beta \in w' \) we can have \(h_i(\alpha, \beta) = M_\zeta. \) Therefore either \(w' \subseteq w_\xi \) or \(w' \subseteq w_\zeta. \) Also,

\[
(\otimes)_1 \text{ if } (\alpha, \beta) \in (w'')^{(2)} \setminus \{(\varepsilon_0, \varepsilon_1), (\varepsilon_1, \varepsilon_0)\} \text{ then } h_i(\alpha, \beta) < M_\xi \text{ for } i < i.
\]
Note that

\((\otimes)_2 \) if \((\alpha, \beta) \in (w_\xi)^{(2)} \cup (w_\zeta)^{(2)} \) then \(\min(\{ \ell : \eta_\alpha(\ell) \neq \eta_\beta(\ell) \}) < n_\xi \) and there are no repetitions in the sequence \(\langle g_i(\alpha, \beta) | n_\xi, g_i(\beta, \alpha) | n_\zeta : i < \iota \rangle \).

Let \(\ell^* = \min(\ell_1, n_\xi) \).

Now, if \(w' \cup w'' \subseteq w_\xi \), then considering \(m(\ell_0, w') \) and \(m(\ell^*, w'') \) (and remembering \((\otimes)_2 \)) we see that \(\ell_0 < n_\xi \), \(m^p_\xi(\ell_0, w') \subseteq m^p_\xi(\ell^*, w'') \) and they have the property contradicting \((\ast)_1 \) for \(p_\xi \).

If \(w' \cup w'' \subseteq w_\zeta \), then in a similar manner we get contradiction with \((\ast)_1 \) for \(p_\zeta \).

If \(w' \subseteq w_\xi \) and \(w'' \subseteq w_\zeta \) then one easily verifies that \(\ell_0 < n_\xi \) and \(m^p_\xi(\ell_0, w') \subseteq m^p_\xi(\ell^*, \pi^{-1}[w'']) \) provide a counterexample for \((\ast)_1 \) for \(p_\xi \).

Similarly if \(w' \subseteq w_\zeta \) and \(w'' \subseteq w_\xi \).

Consequently, the only possibility left is that \(w'' \setminus w_\xi \neq \emptyset \neq w'' \setminus w_\zeta \) and it follows from \((\otimes)_1 \) that \(|w'' \setminus w_\xi| = |w'' \setminus w_\zeta| = 1 \). Let \(\{ \beta_\beta \} = w'' \setminus w_\zeta \) and \(\{ \gamma_\gamma \} = w'' \setminus w_\xi \); then \(\{ \varepsilon_0, \varepsilon_1 \} = \{ \beta_\beta, \gamma_\gamma \} \).

Assume \(w' \subseteq w_\xi \) (the case when \(w' \subseteq w_\zeta \) can be handled similarly). If we had \(b \neq c \), then \(\eta_{\beta_\beta} | n_\xi = \eta_{\beta_\beta} | n_\xi \neq \eta_{\gamma_\gamma} | n_\xi \). Since \(w'' \subseteq (w_\xi \cap w_\zeta) \cup \{ \beta_\beta, \gamma_\gamma \} \) we could see that \(\ell_0 < n_\xi \) and \(m^p_\xi(\ell_0, w') \subseteq m^p_\xi(\ell^*, \pi^{-1}[w'']) \) would provide a counterexample for \((\ast)_1 \) for \(p_\xi \). Consequently, \(b = c \) and \(\ell_1 > n_\xi \). Now, remembering \((\otimes)_0 \), \(\eta_{\beta_\beta} | \ell_0 = \eta_{\gamma_\gamma} | \ell_0 \) and \(m^p_\xi(\ell_0, w') \supseteq m^p_\xi(\ell_0, w'') \setminus \{ \beta_\beta \}, \) so by \((\ast)_9 \) for \(p_\xi \) we conclude

\[\rk(\nu'' \setminus \{ \beta_\beta \}) = -1 \quad \text{and} \quad |\beta_\beta \cap (\nu'' \setminus \{ \beta_\beta \})| = k(\nu'' \setminus \{ \beta_\beta \}). \]

Let \(\zeta^* = \zeta(\nu'' \setminus \{ \beta_\beta \}) \) and \(k^* = k(\nu'' \setminus \{ \beta_\beta \}) \). For \(\varepsilon \in A \setminus \{ \xi \} \) let \(\pi^\varepsilon : w_\xi \rightarrow w_\varepsilon \) be the order isomorphism and let \(\gamma(\varepsilon) \in \pi^\varepsilon[w'' \setminus \{ \beta_\beta \}] \) be such that \(|\pi^\varepsilon[w'' \setminus \{ \beta_\beta \}] \cap \gamma| = k^* \) (necessarily \(\gamma(\varepsilon) = \pi^\varepsilon(\beta_\beta) \in w_\varepsilon \setminus w_\xi \)). Then

- \(\pi^\varepsilon[w'' \setminus \{ \beta_\beta \}] = (w'' \cap (w_\xi \cap w_\varepsilon)) \cup \{ \gamma(\varepsilon) \} = w'' \setminus \{ \beta_\beta, \beta_\gamma \} \cup \{ \gamma(\varepsilon) \} \),
- \(\rk(\pi^\varepsilon[w'' \setminus \{ \beta_\beta \}]) = -1 \), and \(\zeta(\pi^\varepsilon[w'' \setminus \{ \beta_\beta \}]) \),
- \(k(\pi^\varepsilon[w'' \setminus \{ \beta_\beta \}]) = k^* = |\pi^\varepsilon[w'' \setminus \{ \beta_\beta \}] \cap \gamma|). \)
Hence \(M \models R_{\omega',\xi^*}[w'' \setminus \{\beta_b, \gamma_b \} \cup \{\gamma(\varepsilon)\}] \) for each \(\varepsilon \in A \setminus \{\xi\} \). Consequently, the set
\[
\left\{ \alpha < \lambda : M \models R_{\omega',\xi^*}[w'' \setminus \{\beta_b, \gamma_b \} \cup \{\alpha\}] \right\}
\]
is uncountable, contradicting \((\oplus)_c\).

RE \((*)_{11}\): Let us argue that \((*)_{11}\) is satisfied as well and for this suppose that \(\rho_i^0, \rho_i^1 \in \bigcup_{m < M} (t_m \cap n^2)\) (for \(i < \iota\)) are such that

- (a) there are no repetitions in \(\langle \rho_i^0, \rho_i^1 : i < \iota \rangle\), and
- (b) \(\rho_i^0 + \rho_i^1 = \rho_j^0 + \rho_j^1\) for \(i < j < \iota\).

Clearly, if all \(\rho_i^0, \rho_i^1\) are form \(\rho^\sim(\{0, \ldots, 0\})\), then we may use condition \((*)_{11}\) for \(p_\xi\) and conclude that for some \(\alpha_0, \alpha_1 \in w_\xi\) we have
\[
\{\{\rho_i^0, \rho_i^1\} : i < \iota\} = \{\{g_i(\alpha_0, \alpha_1), g_i(\alpha_1, \alpha_0)\} : i < \iota\}.
\]

So assume that we are not in the situation when all \(\rho_i^0, \rho_i^1\) are form \(\rho^\sim(\{0, \ldots, 0\})\).

Note that if \(\rho \in \bigcup_{m < M} (t_m \cap n^2)\) and \(\rho(n_\xi) = 0\), then \(\rho[n_\xi, n] = 0\).

Hence, remembering definitions in \((*)_{18}\), if \(\rho_0, \rho_1, \rho_2, \rho_3 \in \bigcup_{m < M} (t_m \cap n^2)\), \(\rho_0 + \rho_1 = \rho_2 + \rho_3\) and \(\rho_0(n_\xi) = 0\) but \(\rho_1(n_\xi) = 1\), then \(\{\rho_0, \rho_1\} = \{\rho_2, \rho_3\}\). Therefore, under current assumption, we must have \(\rho_i^0(n_\xi) = \rho_i^1(n_\xi) = 1\) for all \(i < \iota\). Define
\[
B = \{(a_\alpha, \gamma_c) : a < k \& c < \ell\},
\]
\[
C = \{(\gamma_b, \gamma_c) : b < c < \ell\},
\]
\[
D = \{(\beta_b, \gamma_c) : b < \ell \& c < \ell \& b \neq c\},
\]
\[
E = \{(\beta_b, \gamma_b) : b < \ell\}.
\]
(These four sets correspond to clauses \((*)_{18}^p - (\ast)^e_{18}\) in the definition of \(g_i\).) Clearly, \(\rho_i^0(n_\xi) = \rho_i^1(n_\xi) = 1\) implies that
\[
\rho_i^0, \rho_i^1 \in \{g_j(\varepsilon_0, \varepsilon_1), g_j(\varepsilon_1, \varepsilon_0) : (\varepsilon_0, \varepsilon_1) \in B \cup C \cup D \cup E, \ j < \iota\}.
\]
Note also that for each $d < N_0 - 1$,

(Ⅹ)\textsubscript{a} the set $\{\rho \in \bigcup_{m < M} (t_m \cap n^2) : \rho\{n\xi, n\xi + N_0 \} = \nu_d\}$ is not empty but it has at most two elements, and

(Ⅹ)\textsubscript{b} $|\{\rho \in \bigcup_{m < M} (t_m \cap n^2) : \rho\{n\xi, n\xi + N_0 \} = \nu_d\}| = 2$ if and only if $d = \Theta(b, c, i, 1)$ for some $b < c < \ell$ and $i < \iota$, and

(Ⅹ)\textsubscript{c} the set $\{\rho \in \bigcup_{m < M} (t_m \cap n^2) : \rho\{n\xi, n\xi + N_0 \} = \nu_d^*\}$ has at most one element, and

(Ⅹ)\textsubscript{d} $\{\rho \in \bigcup_{m < M} (t_m \cap n^2) : \rho\{n\xi, n\xi + N_0 \} = \nu_d^*\} = \emptyset$ if and only if $d = \Theta(b, c, i, 1)$ for some $b < c < \ell$ and $i < \iota$.

Now consider $\rho_i^0\{n\xi, n\xi + N_0\}, \rho_i^1\{n\xi, n\xi + N_0\}$ for $i < \iota$.

If for some $(i, x) \neq (j, y)$ we have $\rho_i^x\{n\xi, n\xi + N_0\} = \rho_j^y\{n\xi, n\xi + N_0\}$, then (using (Ⅹ)\textsubscript{a}–(Ⅹ)\textsubscript{d} and the linear independence of ν_d's) we must have that

$$\rho_i^0\{n\xi, n\xi + N_0\} = \rho_i^1\{n\xi, n\xi + N_0\} \quad \text{for all } i < \iota.$$

Thus, for every $i < \iota$ there are $b < c < \ell$ and $j < \iota$ such that

$$\{\rho_i^0, \rho_i^1\} = \{g_j(\gamma_b, \gamma_c), g_j(\gamma_c, \gamma_b)\}.$$

Since for $b < c < \ell$ we have

$$(g_j(\gamma_b, \gamma_c) + g_j(\gamma_c, \gamma_b))\{N_0, N_0 + \ell\} = \langle 0, \ldots, 0 \rangle^\text{−}_b \langle 1, \ldots, 1 \rangle^\text{−}_c \langle 0, \ldots, 0 \rangle^\text{−}_\ell,$$

we immediately get that (in the current situation) for some $b < c < \ell$ we have

$$\{\{\rho_i^0, \rho_i^1\} : i < \iota\} = \{\{g_i(\gamma_b, \gamma_c), g_i(\gamma_c, \gamma_b)\} : i < \iota\}.$$

So let us assume that $\rho_i^x\{n\xi, n\xi + N_0\} \neq \rho_j^y\{n\xi, n\xi + N_0\}$ for all distinct $(i, x), (j, y) \in \iota \times 2$. Since $\{1, \nu_0, \ldots, \nu_{N_0 - 2}\}$ are linearly independent we may use Lemma 4.3(2) to conclude that

$$\{\rho_i^0\{n\xi, n\xi + N_0\}, \rho_i^1\{n\xi, n\xi + N_0\} : i < \iota\} \subseteq \{\nu_d, \nu_d^* : d < N_0 - 1\}.$$
Consequently, we easily deduce that
\[\{ \{ \rho_i^0, \rho_i^1 \} : i < \iota \} \subseteq \{ \{ g_i(\varepsilon_0, \varepsilon_1), g_i(\varepsilon_1, \varepsilon_0) \} : i < \iota & (\varepsilon_0, \varepsilon_1) \in B \cup D \cup E \}. \]

Using the linear independence of \(\eta_\xi^g \)'s and the definitions of \(g_i \)'s in (*) one checks that the three sets
\begin{align*}
\{ g_i(\varepsilon_0, \varepsilon_1) + g_i(\varepsilon_1, \varepsilon_0) : (\varepsilon_0, \varepsilon_1) \in B, \ i < \iota \}, \\
\{ g_i(\varepsilon_0, \varepsilon_1) + g_i(\varepsilon_1, \varepsilon_0) : (\varepsilon_0, \varepsilon_1) \in D, \ i < \iota \}, \\
\{ g_i(\varepsilon_0, \varepsilon_1) + g_i(\varepsilon_1, \varepsilon_0) : (\varepsilon_0, \varepsilon_1) \in E, \ i < \iota \}
\end{align*}
are pairwise disjoint. Therefore, \(\{ \{ \rho_i^0, \rho_i^1 \} : i < \iota \} \) must be included in (exactly) one of the sets
\begin{align*}
\{ \{ g_i(\varepsilon_0, \varepsilon_1), g_i(\varepsilon_1, \varepsilon_0) \} : i < \iota & (\varepsilon_0, \varepsilon_1) \in B \}, \\
\{ \{ g_i(\varepsilon_0, \varepsilon_1), g_i(\varepsilon_1, \varepsilon_0) \} : i < \iota & (\varepsilon_0, \varepsilon_1) \in D \}, \text{ or} \\
\{ \{ g_i(\varepsilon_0, \varepsilon_1), g_i(\varepsilon_1, \varepsilon_0) \} : i < \iota & (\varepsilon_0, \varepsilon_1) \in E \}.
\end{align*}
But now we easily check that for some \((\varepsilon_0, \varepsilon_1) \in B \cup D \cup E \) we must have
\[\{ \{ \rho_i^0, \rho_i^1 \} : i < \iota \} = \{ \{ g_i(\varepsilon_0, \varepsilon_1), g_i(\varepsilon_1, \varepsilon_0) \} : i < \iota \}. \]
This completes the verification that \(q = (w, n, M, \bar{\eta}, \bar{t}, \bar{r}, \bar{h}, \bar{g}, \mathcal{M}) \in \mathbb{P} \), and clearly \(q \) is stronger than both \(p_\xi \) and \(p_\eta \). \(\square \)

Define \(\mathbb{P} \)-names \(T_m \) and \(\eta_\alpha \) (for \(m < \omega \) and \(\alpha < \lambda \)) by
\begin{align*}
\forces_{\mathbb{P}} "T_m = \bigcup \{ t^p_m : p \in G_{\mathbb{P}} \land m < M_p \} ", \text{ and} \\
\forces_{\mathbb{P}} "\eta_\alpha = \bigcup \{ \eta^p_\alpha : p \in G_{\mathbb{P}} \land \alpha \in w^p \} ".
\end{align*}

Claim 4.4.4. 1. For each \(m < \omega \) and \(\alpha < \lambda \),
\[\forces_{\mathbb{P}} "\eta_\alpha \in \omega^2 \text{ and } T_m \subseteq \omega^2 \text{ is a tree without terminal nodes}". \]

2. \(\forces_{\mathbb{P}} "\bigcup_{m < \omega} \text{lim}(T_m) \text{ is a 2}-\text{npots set}". \]

Proof of the Claim. (1) By Claim 4.4.2 (and the definition of the order in \(\mathbb{P} \)).

(2) Let \(G \subseteq \mathbb{P} \) be a generic filter over \(\mathbb{V} \) and let us work in \(\mathbb{V}[G] \).

Let \(k = 2\iota \) and \(\bar{T} = ((T_m)^G : m < \omega) \).

Suppose towards contradiction that \(B = \bigcup_{m < \omega} \text{lim} ((T_m)^G) \) is a \(k \)-\text{pots} set. Then, by Proposition 3.11, \(\text{NDRK}(\bar{T}) = \infty \). Using Lemma 3.10(5), by induction on \(j < \omega \) we choose \(m_j, m^*_j \in M_{\bar{T},k} \) and \(p_j \in G \) such that
\begin{enumerate}
\item \(\text{ndrk}(m_j) \geq \omega_1, \ |um_j| > 5 \) and \(m_j \subseteq m^*_j \subseteq m_{j+1} \),
\end{enumerate}
(ii) for each $\nu \in u_{m_j^*}$ the set $\{\eta \in u_{m_{j+1}} : \nu < \eta\}$ has at least two elements,

(iii) $p_j \leq p_{j+1}$, $\ell_{m_j} \leq \ell_{m_j^*} = n^{P_j} < \ell_{m_{j+1}}$ and $\text{rng}(n_{i|m_j}) \subseteq M^{P_j}$ for all $i < \iota$, and

(iv) $|\{\eta | n^{P_j} : \eta \in u_{m_{j+1}}\}| = |u_{m_j}| = |u_{m_j^*}|$.

Then, by (iii)+(iv), $m_j, m_j^* \in M^{P_j}_{\nu_{j},k}$. It follows from Claim 4.4.1 that for some $w_j \subseteq w_{P_j}$ and $p_j \in n^{P_j} 2$ we have $(m_j^* + p_j) \models m_{P_j}(n^{P_j}, w_j) \in M^{P_j}$.

Fix j for a moment and consider $m_{P_j}(n^{P_j}, w_j) \in M^{P_j}$ and $m_{P_j+1}(n^{P_j+1}, w_{j+1}) \in M^{P_j+1}$. Since

$$(m_j^* + (p_{j+1} n^{P_j})) \models (m_{j+1}^* + p_{j+1}) \models m_{P_j+1}(n^{P_j+1}, w_{j+1}),$$

we may choose $w_j^* \subseteq w_{j+1}$ such that

$$(m_j^* + (p_{j+1} n^{P_j})) \models m_{P_j+1}(n^{P_j}, w_j^*) \models m_{P_j+1}(n^{P_j+1}, w_{j+1})$$

(and the latter two belong to M^{P_j+1}). Then also

$$m_{P_j+1}(n^{P_j}, w_j^*) \models m_{P_j}(n^{P_j}, w_j) + (p_j + p_{j+1} n^{P_j})$$

so by clause $(*)_9$ for p_{j+1} we have

$$\text{rk}(w_j^*) = \text{rk}(w_j).$$

Clause (ii) of the choice of m_{j+1} implies that

$$(\forall \gamma \in w_j^* \exists \delta \in w_{j+1} \setminus w_j^*)(w_{j+1}^* n^{P_j} = \eta_{P_j+1} n^{P_j}).$$

Let $\delta(\gamma)$ be the smallest $\delta \in w_{j+1} \setminus w_j^*$ with the above property and let $w_j^*(\gamma) = (w_j^* \setminus \{\gamma\}) \cup \{\delta(\gamma)\}$. Then, for $\gamma \in w_j^*$, $m_{P_j+1}(n^{P_j}, w_j^*(\gamma)) \in M^{P_j+1}$ and

$$m_{P_j+1}(n^{P_j}, w_j^*(\gamma)) \models m_{P_j+1}(n^{P_j}, w_j^*(\gamma)) \models m_{P_j+1}(n^{P_j+1}, w_{j+1}).$$

So by clause $(*)_9$ we know that for each $\gamma \in w_j$:

$$\text{rk}(w_j^*(\gamma)) = \text{rk}(w_j^*), \ \ \ \zeta(w_j^*(\gamma)) = \zeta(w_j^*), \ \ \ \text{and} \ \ \ k(w_j^*(\gamma)) = k(w_j^*).$$
Let $n = |w_j^*|$, $\zeta = \zeta(w_j^*)$, $k = k(w_j^*)$, and let $w_j^* = \{\alpha_0, \ldots, \alpha_k, \ldots, \alpha_{n-1}\}$ be the increasing enumeration. Let $\alpha_k^* = \delta(\alpha_k)$. Then clause $(\star)_9$ also gives that $w_j^*(\alpha_k) = \{\alpha_0, \ldots, \alpha_{k-1}, \alpha_k^*, \alpha_{k+1}, \ldots, \alpha_{n-1}\}$ is the increasing enumeration. Now,

\[
\mathbb{M} \models R_{n,\zeta}[\alpha_0, \ldots, \alpha_{k-1}, \alpha_k, \alpha_{k+1}, \ldots, \alpha_{n-1}] \quad \text{and} \\
\mathbb{M} \models R_{n,\zeta}[\alpha_0, \ldots, \alpha_{k-1}, \alpha_k^*, \alpha_{k+1}, \ldots, \alpha_{n-1}],
\]

and consequently if $\text{rk}(w_j^*) \geq 0$, then

\[
\text{rk}(w_{j+1}) \leq \text{rk}(w_j^* \cup \{\alpha_k^*\}) < \text{rk}(w_j^*) = \text{rk}(w_j)
\]

(remember $(\otimes)_4$).

Now, unfixing j, suppose that we constructed w_{j+1}, w_j^* for all $j < \omega$. It follows from our considerations above that for some $j_0 < \omega$ we must have:

(a) $\text{rk}(w_{j_0}^*) = -1$, and

(b) $m^{P_{j_0}+1}(n^{P_{j_0}}, w_{j_0}^*) \sqsupset^* m^{P_{j_0}+1}(n^{P_{j_0}+1}, w_{j_0+1})$

(and both belong to $\mathcal{M}^{P_{j_0}+1}$),

(c) for every $\alpha \in w_{j_0}^*$ we have

\[
\left| \{ \beta \in w_{j_0+1} : \eta_{\alpha}^{P_{j_0}+1} \sqsubset \eta_{\beta}^{P_{j_0}+1} \} \right| > 1.
\]

However, this contradicts clause $(\star)_{10}$ (for p_{j_0+1}). □

Corollary 4.5. Assume MA and $\aleph_\alpha < c$, $\alpha < \omega_1$. Let $3 \leq \iota < \omega$. Then there exists a Σ^0_2 2\iota-\textit{npots} -set $B \subseteq \omega^2$ which has \aleph_α many pairwise 2ι–nondisjoint translations.

Proof. Standard modification of the proof of Theorem 4.4. □

Corollary 4.6. Assume $\text{NPr}_{\omega_1}(\lambda)$ and $\lambda = \lambda^{\aleph_0} < \mu = \mu^{\aleph_0}$, $3 \leq \iota < \omega$. Then there is a ccc forcing notion Q of size μ forcing that

(a) $2^{\aleph_0} = \mu$ and

(b) there is a Σ^0_2 2\iota-\textit{npots} -set $B \subseteq \omega^2$ which has λ many pairwise 2ι–nondisjoint translates but not λ^+ such translates.
Proof. Let \mathbb{P} be the forcing notion given by Theorem 4.4 and let $\mathbb{Q} = \mathbb{P} \ast C_{\mu}$. Use Proposition 3.3(4) to argue that the set B added by \mathbb{P} is a npots-set in $V^{\mathbb{Q}}$. By 3.3(3) this set cannot have λ^+ pairwise 2τ-nondisjoint translates, but it does have λ many pairwise 2τ-nondisjoint translates (by absoluteness).

Remark 4.7. It follows from Proposition 3.3(1,2), that if there exists a Σ^0_2 pots-set $B \subseteq \omega^2$ such that for some set $A \subseteq \omega^2$ we have $(B + a) \cap (B + b) \neq \emptyset$ for all $a, b \in A$, then std$(B) \subseteq \omega^2 \times \omega^2$ is a Σ^0_2 set which contains a $|A|$-square but no perfect square. Thus Corollary 4.6 is a slight generalization of Shelah [7, Theorem 1.13].

5. Further research

The case of $k = 4$ in Theorem 4.4 will be dealt with in a subsequent paper [6] alongside with further investigations of Σ^0_2 subsets of ω^2 with pregiven rank NDRK. In subsequent works we will also investigate the general case of Polish groups (not just ω^2). The following two problems are still open however.

Problem 5.1. Is is consistent to have a Borel set $B \subseteq \omega^2$ such that

- for some uncountable set H, $(B + x) \cap (B + y)$ is uncountable for every $x, y \in H$, but

- for every perfect set P there are $x, y \in P$ with $(B + x) \cap (B + y)$ countable?

Problem 5.2. Is it consistent to have a Borel set $B \subseteq \omega^2$ such that

- B has uncountably many pairwise disjoint translations, but

- there is no perfect of pairwise disjoint translations of B?

References

Proof. Let P be the forcing notion given by Theorem 4.4 and let $Q = P^* C_{\mu}$. Use Proposition 3.3(4) to argue that the set B added by P is a npots–set in V_Q. By 3.3(3) this set cannot have λ pairwise 2-ι–nondisjoint translates, but it does have λ many pairwise 2-ι–nondisjoint translates (by absoluteness). □

Remark 4.7. It follows from Proposition 3.3(1,2), that if there exists a Σ_0^2–set $B \subseteq \omega^2$ such that for some set $A \subseteq \omega^2$ we have $(B + a) \cap (B + b) \neq \emptyset$ for all $a, b \in A$, then $\text{stnd}(B) \subseteq \omega^2 \times \omega^2$ is a Σ_0^2-set which contains a $|A|$–square but no perfect square. Thus Corollary 4.6 is a slight generalization of Shelah [7, Theorem 1.13].

5 Further research
The case of $k = 4$ in Theorem 4.4 will be dealt with in a subsequent paper [6] alongside with further investigations of Σ_0^2 subsets of ω^2 with pregiven rank NDRK. In subsequent works we will also investigate the general case of Polish groups (not just ω^2). The following two problems are still open however.

Problem 5.1. Is is consistent to have a Borel set $B \subseteq \omega^2$ such that
- for some uncountable set H, $(B + x) \cap (B + y)$ is uncountable for every $x, y \in H$, but
- for every perfect set P there are $x, y \in P$ with $(B + x) \cap (B + y)$ countable?

Problem 5.2. Is it consistent to have a Borel set $B \subseteq \omega^2$ such that
- B has uncountably many pairwise disjoint translations, but
- there is no perfect of pairwise disjoint translations of B?

References

Department of Mathematics
University of Nebraska at Omaha
Omaha, NE 68182-0243, USA
aroslanowski@unomaha.edu

Institute of Mathematics
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
and
Department of Mathematics
Rutgers University
New Brunswick, NJ 08854, USA
shelah@math.huji.ac.il
http://shelah.logic.at