ERRATA ON “ON THE VARIETY OF HEYTING ALGEBRAS WITH SUCCESSOR GENERATED BY ALL FINITE CHAINS”

In [3] we have claimed that finite Heyting algebras with successor only generate a proper subvariety of that of all Heyting algebras with successor, and in particular all finite chains generate a proper subvariety of the latter. As Xavier Caicedo made us notice, this claim is not true. He proved, using techniques of Kripke models, that the intuitionistic calculus with \(S \) has finite model property and from this result he concluded that the variety of Heyting algebras with successor is generated by its finite members [2].

This fact particularly affects Section 3.2 of our article. Concretely, in Remark 3.3, our claim “Let \(\mathcal{K} \) be a class of \(S \)-Heyting algebras of height less or equal to a fixed ordinal \(\xi \). Using the categorical duality between \(S \)-Heyting algebras and \(S \)-Heyting spaces, it can be shown that the elements of classes \(H(\mathcal{K}) \), \(S(\mathcal{K}) \) and \(P(\mathcal{K}) \) have also height less or equal to \(\xi \). Here \(H \), \(S \) and \(P \) are the class operators of universal algebra. Hence for each ordinal \(\xi \), the class of \(S \)-Heyting algebras of height less or equal to \(\xi \) is a variety” is not true as stated. It remains valid only if \(\xi \) is a finite ordinal.

Received 13 September 2011
In particular, the class of S-Heyting algebras of height ω is not a variety and the variety generated by all finite chains is exactly the variety of linear S-Heyting algebras.

In what follows, instead of using the proof given in [2], which is not published, we shall give a simple algebraic proof that the variety of linear Heyting algebras with S is generated by the finite chains.

Let T be the type of Heyting algebras with successor built in the usual way from the operation symbols \land, \lor, \rightarrow, and S corresponding to meet, join, implication and successor, respectively. Write $T(X)$ for the term algebra of type T with variables in the set X. It is well known that any function $v : X \rightarrow H$, with H a S-Heyting algebra, may be extend to a unique homomorphism $v : T(X) \rightarrow H$.

Write SLH for the variety of linear S-Heyting algebras. Recall that SLH is said to have the finite model property (FMP) if for every $\varphi \in T(X)$ there is a linear S-Heyting algebra H and a homomorphism $v : T(X) \rightarrow H$ such that if $v(\varphi) \neq 1$ then there is a finite linear S-Heyting algebra L and a homomorphism $w : T(X) \rightarrow L$ such that $w(\varphi) \neq 1$. Let us prove that SLH has the FMP. In so doing we shall use the two following well known Lemmata.

Lemma 1. (Lemma 1.1 of [4]) If P is a prime filter in a linear algebra H, then H/P is a chain.

Lemma 2. Let C be a S-Heyting algebra which is a chain and L a bounded sublattice of C, endowed with its implication \rightarrow_L and successor S_L, as finite lattice. Then, we have that,

1. If $x, y \in L$ then $x \rightarrow y = x \rightarrow_L y$.
2. If $x, S(x) \in L$ then $S_L(x) = S(x)$.

Take α and β in $T(X)$. Note that an equation $\alpha \approx \beta$ holds in a S-Heyting algebra H if and only if $\alpha \rightarrow \beta \approx 1$ holds in H; and the latter is equivalent to ask that for any homomorphism $v : T(X) \rightarrow H$, $v(\alpha \rightarrow \beta) = 1$.

We are now ready to prove the main result.

Proposition 3. The variety SLH has the FMP.
Proof. Let $\psi \in T(X)$, H be a linear S-Heyting algebra and $v : T(X) \to H$ be a homomorphism such that $v(\psi) \neq 1$. Let \to and S be the implication and the successor of H respectively. We will find a finite chain L and a homomorphism $t : T(X) \to L$ such that $t(\psi) \neq 1$.

By the Prime Filter Theorem there is a prime filter P of H such that $v(\psi) \notin P$, so $v(\psi)/P \neq 1$. Write C in place of H/P. Hence, by Lemma 1, we have that C is a chain. On the other hand, using that the successor operator is compatible [1] we have that the quotient function $\rho : H \to C$ is a homomorphism. Hence $w = \rho v : T(X) \to C$ is a homomorphism. Note that $w(\psi) = v(\psi)/P \neq 1$.

Let $\text{Sub}_\psi = \{\psi_1, ..., \psi_n\}$ be the set of subformulas of ψ and L the subset of C given by $\{0, 1\} \cup \{w(\alpha) : \alpha \in \text{Sub}_\psi\}$. If V is the set of propositional variables which appear in ψ, we can define the function $t : X \to L$ in the following way:

$$t(x_i) = \begin{cases} w(x_i) & \text{if } x_i \in V \\ 0 & \text{if } x_i \notin V. \end{cases}$$

We know that t may be uniquely extended to a homomorphism $t : T(X) \to L$. Using Lemma 2, we can prove, by an easy induction on sentences, that $t(\psi_i) = w(\psi_i)$ for $i = 1, ..., n$. Therefore we have that $t(\psi) = w(\psi) \neq 1$. \hfill \square

In particular, we have that the following corollary holds.

Corollary 4. The variety SLH is generated by all finite chains.

Finally, we want to call the attention to a typos in Proposition 5.6. We wrote SHS in place of SLH.

References

Departamento de Matematica,
Facultad de Ciencias Exactas, UNLP.
Casilla de correos 172,
La Plata (1900)
Argentina

jlc@mate.unlp.edu.ar
hsanmartin@mate.unlp.edu.ar