ŁUKASZ GOLA*

COMPUTER AIDED MODELING ASSEMBLY PROCESS PLAN

Abstract

In the Institute of Production Engineering of Cracow University of Technology carried out research in the field: design manual and robotic manufacturing systems. The paper presents computer aided modeling assembly process plan with using programs: CAD/CAM Catia v5, MS Visio 2010, MS Excel 2010). The assembly process plan is illustrated in the example of dual stage regulator.

Keywords: CAPP, assembly process plan, manufacturing system

Streszczenie

W Instytucie Technologii Maszyn i Automatyzacji Produkcji Politechniki Krakowskiej prowadzone są badania z zakresu projektowania ręcznych i zrobotyzowanych stanowisk i systemów wytwarzania. W artykule przedstawiono proces projektowania procesu technologicznego montażu z zastosowaniem systemów komputerowego wspomagania (system CAD/CAM Catia v5, Visio 2010, Excel 2010).

Słowa kluczowe: CAPP, proces technologiczny montażu, system wytwarzania

* PhD. Eng. Łukasz Gola, Institute of Production Engineering, Mechanical Faculty, Cracow University of Technology.
1. Introduction

Design of complex manufacturing systems (assembly manufacturing systems) is a multi-step process (design and decision making). During this process, the basic steps are carried out:
- Prepare assumptions
- Preliminary design of assembly process plan
- Conceptual design of assembly workstations (assembly line)
- Modeling and verification

2. Prepare assumptions

The starting point of any process plan is to define product (Fig. 1) which will be mounted and next specify the production program. Characteristics of the product (the weight and size) affects for selecting appropriate manufacturing instruments – for example: equipment of assembly workstations, mode of transport between workstations (conveyor belt, trucks, ...). Whereas the production program determines the production cycle, which limits the duration of individual operations.

![Dual stage regulator](image)

Fig. 1. Dual stage regulator
Rys. 1. Reduktor stożkowo-walcowy

Presented product (Fig 1) was modeled with using CAD/CAM Catia System (Modules: Part Design and Assembly Design).

3. Preliminary design of assembly process plan

The purpose of this step is to analyze the product structure for its possible split (assemblies and subassemblies) which can be mounted independently of each other. This process is also known as aggregation of parts. An example of a product with separate assemblies and subassemblies is shown in (Fig. 2).
Fig. 2. Assemblies and subassemblies of dual stage regulator
Rys. 2. Zespoły i podzespoły reduktora stożkowo-walcowego

Fig. 3. Follow-graph of assembly operations
Rys. 3. Graf następstw operacji montażowych
Aggregation of parts allow for the identification which assemblies and subassemblies can be mounted independently. On this basis and on the basis of follow-graph (Fig. 3) (showing the correct order of assembly), we can develop the assembly sequence (Fig. 4). The follow-graph can be very helpful in determining the sequence, especially for more complex products.

4. Conceptual design of assembly

The purpose of conceptual design is: determine the duration of the pre-planned operations, division or grouping of operations to finally get the operations of similar duration (balancing). It should also be chosen such time values, that do not exceed the production cycle. To achieve this goal we must first develop preliminary design assembly workstations (flat sketches)

<table>
<thead>
<tr>
<th>Number of operation</th>
<th>Content of operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Mounting subassembly drive shaft (ZM1)</td>
</tr>
<tr>
<td>20</td>
<td>Mounting assembly drive shaft (ZM2)</td>
</tr>
<tr>
<td>30</td>
<td>Mounting assembly middle shaft (ZM3)</td>
</tr>
<tr>
<td>40</td>
<td>Mounting subassembly middle shaft (ZM4)</td>
</tr>
<tr>
<td>50</td>
<td>Mounting assembly out shaft (ZM5)</td>
</tr>
<tr>
<td>60</td>
<td>Mounting seal of drive shaft (ZM6)</td>
</tr>
<tr>
<td>70</td>
<td>Mounting seal of out shaft (ZM7)</td>
</tr>
<tr>
<td>80</td>
<td>Mounting subassembly trunk (ZM8)</td>
</tr>
<tr>
<td>90</td>
<td>Mounting main assemblies (ZM9)</td>
</tr>
<tr>
<td>100</td>
<td>Oil charge and closing regulator (ZM10)</td>
</tr>
<tr>
<td>110</td>
<td>Technical control</td>
</tr>
</tbody>
</table>

Fig. 4. The sequence assembly
Rys. 4. Kolejność montażu

Aggregation of parts allow for the identification which assemblies and subassemblies can be mounted independently. On this basis and on the basis of follow-graph (Fig. 3) (showing the correct order of assembly), we can develop the assembly sequence (Fig. 4). The follow-graph can be very helpful in determining the sequence, especially for more complex products.

Fig. 5. Sketches of assembly workstations – MS Visio 2010
Rys. 5. Szkice stanowisk montażowych – MS Visio 2010

which include the distribution of equipment and operators (Fig. 5). A convenient computer program for the preparation of such drawings is Microsoft Visio 2010. Next then there is standardization duration of individual operations. In the case of manual work, usually the most useful method of standardization are methods: MTM1 (Fig. 6), MTM2, MOST. The choice of
method depends on the expected duration of the operation and its characteristics (standardized operation is divided into individual movements or entire sequences of operations).

The next step is balancing operations. In practice often used “manual” balancing operations or heuristic methods. The best known of these is the methods: RPW method (Ranked Positional Weight), RRPW method (Reversed Ranked Positional Weight), Kilbridge’a and Wester’a method (K&W), matrix method of order Hoffmana, IUFF method (Immediate Update First-Fit).

Fig. 6. Standardization of operation time – MTM-1 (Excel 2010)

Rys. 6. Standardization of operation time – MTM-1 (Excel 2010)

The next step is balancing operations. In practice often used “manual” balancing operations or heuristic methods. The best known of these is the methods: RPW method (Ranked Positional Weight), RRPW method (Reversed Ranked Positional Weight), Kilbridge’a and Wester’a method (K&W), matrix method of order Hoffmana, IUFF method (Immediate Update First-Fit).

Fig. 7. Sample of operation sheet

Rys. 7. Przykładowa karta instrukcyjna
The final step in this phase is the development of technical documentation (operation sheets (Fig. 7).

5. Modeling and verification of assembly workstations

At this stage of organizational and technological preparation can now proceed to the proper design of assembly workstations. This stage includes:
– designing the structure of distribution workstations with the way transport links,
– design of individual workstations (Fig. 8; Fig. 9), developed based on early sketch of workstations,
– design equipment and transport (Fig. 10),
– assembly simulation (Fig. 11).

Fig. 8. Assembly workstations – CAD/CAM Catia v5
Rys. 8. Stanowiska montażowe – CAD/CAM Catia v5

Fig. 9. Assembly workstations – CAD/CAM Catia v5
Rys. 9. Stanowiska montażowe – CAD/CAM Catia v5
The final step, before the physical implementation of the project, is a simulation particular workstations and their evaluation due to the ergonomic requirements. System CAD/CAM Catia v5 (Fig. 12) is a tool which can be comprehensively applied to the implementation of all project activities including 3D modeling of individual parts of the product, modeling workstations, modeling transport, ergonomic simulation.
Designing of any system (assembly system) is a complex process with used in the field of knowledge: design process plans, standardization of operations, balancing operations performed in the manufacturing system, ergonomic principles. Use the tools to create a virtual 3D model of the system, allows to simulate and verify the operation of the system before it is implemented in practice. This allows to avoid a lot of errors in the construction, much lower costs and shorten the cycle time pre-production (from project to construction).

References