FINITELY BASED MONOIDS OBTAINED FROM
NON-FINITELY BASED SEMIGROUPS

BY EDMOND W. H. LEE

Abstract. Presently, no example of non-finitely based finite semigroup S is known for which the monoid S^1 is finitely based. Based on a general result of M. V. Volkov, two methods are established from which examples of such semigroups can be constructed.

1. Introduction. A semigroup is finitely based if the identities it satisfies are finitely axiomatizable. Commutative semigroups 9, idempotent semigroups $^3,^5$, and finite groups 8 are finitely based, but not all semigroups are finitely based in general. Further, the class \mathfrak{FB} of finitely based semigroups is not closed under common operators such as the formation of homomorphic images, subsemigroups, and direct products. Refer to the survey by Volkov 14 for more information on these operators and the finite basis problem for semigroups in general. The present article is concerned with the operator that maps each semigroup S to the smallest containing monoid

$$S^1 = \begin{cases} S & \text{if } S \text{ is a monoid,} \\ S \cup \{1\} & \text{otherwise.} \end{cases}$$

The class \mathfrak{FB} is not closed under this operator; there exist finitely based semigroups S such that the monoids S^1 are non-finitely based. The earliest example demonstrating this property, published by Perkins 9 in 1969, is a certain semigroup R_{24} of order 24; see Section 3. Perkins’s work in fact contains a much smaller example that he was unaware of at that time: he proved that the Brandt monoid B^1_2 is non-finitely based 9, while the Brandt semigroup

$$B_2 = \langle a, b \mid a^2 = b^2 = 0, aba = a, bab = b \rangle$$

2000 Mathematics Subject Classification. 20M05.
Key words and phrases. Semigroup, monoid, finitely based.
of order five was later shown by Trahtman to be finitely based \[12\]. These examples led Shneerson \[11\] to question the existence of semigroups having the “opposite” property.

Question 1. Do non-finitely based semigroups S exist for which the monoids S^1 are finitely based?

In what follows, it is convenient to call a semigroup S conformable if S is non-finitely based while S^1 is finitely based. Shneerson provided an affirmative answer to Question 1 by proving that the semigroup

$$T = \langle a, b \mid aba = ba \rangle$$

is conformable \[11\]. However, unlike the finite examples B_2 and R_{24} that motivated Shneerson’s question, the semigroup T is infinite. Apart from T, no other semigroup has since been found to be conformable. Therefore, the restriction of Question 1 to finite semigroups is of fundamental interest.

Question 2. Do finite conformable semigroups exist?

Recall that a semigroup S with zero 0 is nilpotent if there exists some $n \geq 1$ such that the product of any n elements of S equals 0. Each nilpotent semigroup satisfies the identity

$$x_1x_2\cdots x_n = y_1y_2\cdots y_n$$

for some $n \geq 1$ and so is easily shown to be finitely based \[9\]. It turns out that by the following general result of Volkov \[13\], which was established prior to Question 1 being posed by Shneerson, an abundance of finite conformable semigroups can be constructed from nilpotent semigroups.

Lemma 3. Suppose that N is any nilpotent semigroup. Then for any semigroup S, the direct product $S \times N$ is finitely based if and only if S is finitely based.

2. **Constructing finite conformable semigroups.** Recall that the variety generated by a semigroup S, denoted by $\text{var} S$, is the smallest class of semigroups containing S that is closed under the formation of homomorphic images, subsemigroups, and arbitrary direct products. A semigroup S satisfies the same identities as the variety $\text{var} S$ it generates \[2\].

Theorem 4. Suppose that S and N are any semigroups such that

(a) S^1 is non-finitely based;
(b) N is nilpotent;
(c) $S^1 \times N^1$ is finitely based.

Then the direct product $P = S^1 \times N$ is conformable.
Proof. The semigroup P is non-finitely based by (a), (b), and Lemma 3. Since P is a subsemigroup of $S^1 \times N^1$, it belongs to the variety $\text{var}(S^1 \times N^1)$. The inclusion $\text{var} P^1 \subseteq \text{var}(S^1 \times N^1)$ then follows [1, Lemma 7.1.1]. But the monoids S^1 and N^1 are embeddable in P^1 so that $\text{var} P^1 = \text{var}(S^1 \times N^1)$. Therefore, the monoid P^1 is finitely based by (c).

Theorem 5. Suppose that S and N are any semigroups such that

(a) S^1 is non-finitely based;
(b) N is nilpotent;
(c) N^1 is finitely based;
(d) $\text{var} S^1 \subseteq \text{var} N^1$.

Then the direct product $P = S^1 \times N$ is conformable.

Proof. Following the proof of Theorem 4, the semigroup P is non-finitely based with $\text{var} P^1 = \text{var}(S^1 \times N^1)$. Then (d) implies that $\text{var} P^1 = \text{var} N^1$, whence the monoid P^1 is finitely based by (c).

The following results of Jackson and Sapir [6] now provide the appropriate finite semigroups S and N to construct the conformable semigroups P in Theorems 4 and 5.

Lemma 6. There exist finite nilpotent semigroups S and N such that S^1 and N^1 are non-finitely based while $S^1 \times N^1$ is finitely based.

Lemma 7. There exist finite nilpotent semigroups S and N such that S^1 is non-finitely based, N^1 is finitely based, and $\text{var} S^1 \subseteq \text{var} N^1$.

Jackson and Sapir in fact presented methods for locating as many of the semigroups in Lemmas 6 and 7 as desired [6, Corollaries 3.1 and 5.2].

3. Explicit examples of finite conformable semigroups. Let A^+ denote the free semigroup over a countably infinite alphabet A. Elements of A^+ are called words. For any finite set $W = \{w_1, \ldots, w_k\}$ of words, let $R(w_1, \ldots, w_k)$ denote the Rees quotient of A^+ over the ideal of all words that are not factors of any word in W. Equivalently, $R(w_1, \ldots, w_k)$ can be treated as the semigroup that consists of every nonempty factor of every word in W, together with a zero element 0, with binary operation \cdot given by

$$u \cdot v = \begin{cases} uv & \text{if } uv \text{ is a factor of some word in } W, \\ 0 & \text{otherwise.} \end{cases}$$

It is easily seen that the semigroup $R(w_1, \ldots, w_k)$ is nilpotent. The semigroup R_{24} of Perkins introduced in Section 1 is $R(xyzyx, xzyxy, xyxy, xzx)$.

Consider the semigroups

$$R_8 = R(xyxy), \quad R_{12} = R(xxyy, xyyx), \quad \text{and} \quad R_{15} = R(xyxy, xxyy, xyyx)$$

where $|R_8| = 8$, $|R_{12}| = 12$, and $|R_{15}| = 15$. Then
• R_8^1 is non-finitely based \([6, \text{Example 4.2}]\);
• R_8^{12} is non-finitely based \([6, \text{proof of Corollary 5.1}]\);
• R_8^{15} is finitely based \([6, \text{Corollary 3.2 and proof of Corollary 5.1}]\);
• $\var(R_8^1 \times R_8^{12}) = \var R_8^{15}$ \([6, \text{Lemma 5.1}]\).

It follows that the pairs $(S, N) = (R_8, R_{12})$ and $(S, N) = (R_8, R_{15})$ satisfy Lemmas [6] and [7], respectively. Therefore, by Theorems [4] and [5], the semigroups $R_8^1 \times R_{12}$ and $R_8^1 \times R_{15}$ are conformable.

Now since the conformable semigroup $P = S^1 \times N$ in Theorems \([4, 5]\) is a direct product, its order $|S^1||N|$ can be quite large in general. But it turns out that the semigroup P contains a proper subsemigroup that is also conformable. Define

$$P_* = S_*^1 \cup N_*$$

where $S_*^1 = \{(a, 0) \mid a \in S^1\}$ and $N_* = \{(0, b) \mid b \in N\}$. Then it is easily seen that S_*^1, N_*, and P_* are subsemigroups of P.

Proposition 8. The semigroup P_* is conformable.

Proof. The isomorphic relations $S^1 \cong S_*^1$ and $N \cong N_*$ clearly hold. Therefore,

$$\var P = \var (S^1 \times N) = \var (S_*^1 \times N_*) \subseteq \var P_* \subseteq \var P,$$

whence the semigroups P and P_* generate the same variety and so satisfy the same identities. The result thus follows. \[\square\]

The semigroup P_* has order $|S_*^1| + |N_*| - 1$ and so is often much smaller than the semigroup P with order $|S^1||N|$. For instance,

$$\left\{ (|P_*|, |P|) \mid (S, N) = (R_8, R_{12}) \right\} = \left\{ (20, 108) \right\} \text{ if (S, N) = (R_8, R_{12}),}$$

$$\left\{ (23, 135) \right\} \text{ if (S, N) = (R_8, R_{15}).}$$

On the other hand, the semigroup P_* is still quite large; the order of any non-finitely based monoid of the form $R(w_1, \ldots, w_k)$ is at least nine \([6, \text{Theorem 4.3}]\) so that $|P_*| \geq 9 + 2 - 1 = 10$.

In view of the small semigroup B_2 that motivated Question [1] it is natural to pose the following question:

Question 9. What is the smallest possible order of a conformable semigroup?

Based on results of Lee *et al.* \([7]\), Sapir \([10]\), and Zhang \([15]\), the order of any conformable semigroup is at least seven.

Acknowledgment. The author would like to thank the anonymous reviewer for a number of helpful, constructive comments.
References

Received September 30, 2013

Division of Math, Science, and Technology
Nova Southeastern University
3301 College Avenue
Fort Lauderdale
Florida 33314, USA
e-mail: edmond.lee@nova.edu