
REPORTS ON MATHEMATICAL LOGIC
52 (2017), 3–44
doi:10.4467/20842589RM.17.001.7139

Norihiro KAMIDE

PARACONSISTENT SEQUENTIAL

LINEAR-TIME TEMPORAL LOGIC:

COMBINING PARACONSISTENCY AND

SEQUENTIALITY IN TEMPORAL

REASONING

A b s t r a c t. Inconsistency-tolerant temporal reasoning with

sequential (i.e., ordered or hierarchical) information is gaining in-

creasing importance in computer science applications. A logical

system for representing such reasoning is thus required for ob-

taining a theoretical basis for such applications. In this paper, we
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.1 Introduction

Inconsistency-tolerant temporal reasoning with sequential (i.e., ordered or

hierarchical) information is of growing importance in computer science ap-

plications such as medical informatics and agent communication. A logical

system for representing such reasoning is thus required for obtaining a con-

crete theoretical basis for such applications. However, to the best of our

knowledge, there are no logical systems that can simultaneously represent

inconsistency, sequentiality, and temporality. Thus, the aim of our study

is to introduce a logical system, both semantically and syntactically, for

appropriately representing inconsistency-tolerant temporal reasoning with

sequential information.

Hence, we introduce a new logic called paraconsistent sequential linear-

time temporal logic (PSLTL), which is an extension of the standard linear-

time temporal logic (LTL) [28]. Inconsistency-tolerant reasoning in PSLTL

is expressed via a paraconsistent negation connective, and sequential infor-

mation is represented by sequence modal operators. Temporal reasoning

in PSLTL is, of course, expressed by temporal operators used in LTL. The

cut-elimination, decidability, and completeness theorems for PSLTL are

proved via theorems for semantically and syntactically embedding PSLTL

into its fragments SLTL and LTL, where SLTL is explained later.

PSLTL is regarded as an extension of both LTL and Nelson’s paracon-

sistent four-valued logic with strong negation N4 [1, 22, 27, 32]. On the

one hand, LTL is known to be one of the most useful temporal logics for

verifying concurrent systems. On the other hand, N4 is known to be one of

the most important base logics for inconsistency-tolerant reasoning. The

combination of LTL and N4 was previously studied in [21], and such a com-

bined logic is called paraconsistent LTL (PLTL). PSLTL is obtained from

PLTL by adding sequence modal operators.

LTL is known to be one of the most useful temporal logics in Com-

puter Science. Indeed, LTL is one of the most useful and important base

logics for formalizing model checking technologies [5, 6]. The SPIN model

checker [11], which is known to be one of the most useful model checkers,

was developed on the basis of LTL. Gentzen-type sequent calculi for LTL

and its neighbors have been introduced and studied by many researchers. A

Gentzen-type sequent calculus LTω for LTL was introduced by Kawai [26],

who proved cut-elimination and Kripke-completeness theorems for this cal-
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culus. A 2-sequent calculus 2Sω for LTL, which is a natural extension

of the usual Gentzen-type sequent calculus, was introduced by Baratella

and Masini [3]. A direct syntactical equivalence between LTω and 2Sω was

shown by introducing the translation functions that preserve cut-free proofs

of these calculi [12]. For more information on LTL, see, e.g., [8].

N4, which is also referred to in the literature as N−, is known to be

one of the most important and basic paraconsistent logics in Computer

Science and Philosophical Logic. N4 is also known to be a common basis

for various extended and useful paraconsistent logics. It is known that N4

is a paraconsistent variant of Nelson’s constructive three-valued logic N3,

which is also referred to as N and has been studied by several mathematical

logicians. Gentzen-type sequent calculi for Nelson’s logics have been inves-

tigated, and Kripke semantics for Nelson’s logics have also been studied. A

translation of N3 into intuitionistic logic has been proposed and studied by

several researchers [31, 10, 30]. A similar translation for N4 into LJ, which

is Gentzen’s sequent calculus for positive intuitionistic propositional logic,

can also be obtained. For a comprehensive survey on Nelson’s logics, see,

e.g., [22, 32].

Combining LTL with sequence modal operators was studied in [14, 23,

15], and such combined logics were called sequence-indexed LTL (SLTL) and

sequential paraconsistent LTL (SPLTL). PSLTL is regarded as a modified

paraconsistent extension of SLTL, and hence PSLTL is a modified extension

of both PLTL [21] and SLTL [23]. In the remainder of this section, we

explain an important property of paraconsistent negation and a plausible

interpretation of sequence modal operators. Some comparisons among the

logics mentioned above will be presented in Section 6.

The paraconsistent negation connective ∼ used in PSLTL can appro-

priately express inconsistency-tolerant reasoning. One reason why ∼ is

considered is that it can be added in such a way that the extended logic

satisfies the property of paraconsistency. A consequence relation |= is called

paraconsistent with respect to a negation connective ∼ if there are formu-

las α and β such that {α,∼α} |= β does not hold (this fact is denoted by

not-[{α,∼α} |= β]). In the case of LTL, this implies that there exists a

model M and position i of a sequence σ = t0, t1, t2, ... of time-points in M

with not-[(M, i) |= (α ∧ ∼α)→β].

Logical systems with paraconsistency can handle inconsistency-tolerant

and uncertainty reasoning more appropriately than systems that are non-
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paraconsistent. For example, we do not want (s(x) ∧ ∼s(x))→d(x) to be

satisfied for any symptom s and disease d, where ∼s(x) means “person x

does not have symptom s” and d(x) means “person x suffers from disease

d,” because there may be situations that support the truth of both s(a)

and ∼s(a) for some individual a but do not support the truth of d(a).

If we cannot determine whether someone is healthy, then the vague

concept healthy can be represented by asserting the inconsistent formula:

healthy(john) ∧ ∼healthy(john). This is well-formalized in PSLTL be-

cause the formula healthy(john) ∧ ∼healthy(john) → hasCancer(john)

where hasCancer(john) means “John has cancer” is not valid in PSLTL

(i.e., PSLTL is inconsistency-tolerant). On the other hand, the formula

healthy(john)∧¬healthy(john)→ hasCancer(john), where ¬ is the clas-

sical negation connective is valid in classical logic (i.e., inconsistency has

undesirable consequences). For more information on paraconsistency and

inconsistency-handling, see e.g., [29, 2] and the references therein.

Some sequence modal operators [19, 14, 23, 25, 15] used in PSLTL

can suitably express sequential information. A sequence modal operator

[b] represents a sequence b of symbols. The notion of sequences is useful

to represent “information,” “trees,” and “ontologies.” Thus, “sequential

(i.e., ordered or hierarchical) information” can be represented by sequences

because a sequence structure gives monoid 〈M, ;, ∅〉 with informational in-

terpretation [32] as follows: (1) M is a set of pieces of ordered or prioritized

information (i.e., a set of sequences); (2) ; is a binary operator (on M)

that combines two pieces of information (i.e., a concatenation operator on

sequences); and (3) ∅ is the empty piece of information (i.e., the empty

sequence).

A formula of the form [b1 ; b2 ; · · · ; bn]α in PSLTL intuitively means

that “α is true based on a sequence b1 ; b2 ; · · · ; bn of ordered or prioritized

information pieces.” Further, a formula of the form [∅]α in PSLTL, which

coincides with α, intuitively means that “α is true without any information”

(i.e., it is an eternal truth in the sense of classical logic).

The structure of the paper is as follows.

In Section 2, PSLTL is introduced semantically by extending the se-

mantics of LTL with a paraconsistent negation connective and sequence

modal operators. Within this section, LTL is first presented with its stan-

dard semantics, then SLTL is presented as semantics with some sequence

modal operators. Finally, PSLTL is obtained from SLTL by adding a para-
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consistent negation connective similar to that of N4.

In Section 3, we introduce a Gentzen-type sequent calculus PSLTω for

PSLTL, which is an extension of a Gentzen-type sequent calculus LTω for

LTL. Within this section, we first present a Gentzen-type sequent calculus

LTω, introduced by Kawai [26], then we present a Gentzen-type sequent

calculus SLTω for SLTL on the basis of [14, 23]. Finally, PSLTω is obtained

from SLTω by adding inference rules concerning the paraconsistent negation

connective.

In Section 4, we prove the cut-elimination, decidability, and complete-

ness theorems for PSLTL (and PSLTω) via two theorems for semantically

and syntactically embedding PSLTL (and PSLTω) into SLTL (SLTω) and

LTL (LTω). A translation algorithm and some translation examples are

also provided in this section.

In Section 5, we present some small illustrative examples on the basis

of PSLTL and PSLTω.

Finally, in Section 6, we conclude our paper and discuss related and

future works.

.2 Semantics

.2.1 LTL

Formulas of LTL are constructed from countably many propositional vari-

ables, → (implication), ∧ (conjunction), ∨ (disjunction), ¬ (negation),

X (next), G (globally) and F (eventually). Lower-case letters p, q, ... are

used to denote propositional variables, and Greek lower-case letters α, β, ...

are used to denote formulas. An expression α ↔ β is used to denote

(α→β) ∧ (β→α). We write A ≡ B to indicate the syntactical identity

between A and B. The symbol ω is used to represent the set of natu-

ral numbers. Lower-case letters i, j and k are used to denote any natural

numbers. The symbol ≥ or ≤ is used to represent a linear order on ω.

Definition 2.1. Formulas of LTL are defined by the following grammar,

assuming p represents propositional variables:

α ::= p | α ∧ α | α ∨ α | α→α | ¬α | Xα | Gα | Fα
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Definition 2.2 (LTL). Let S be a non-empty set of states. A structure

M := (σ, I) is a model if

1. σ is an infinite sequence s0, s1, s2, ... of states in S,

2. I is a mapping from the set Φ of propositional variables to the power

set of S.

A satisfaction relation (M, i) |= α for any formula α, whereM is a model

(σ, I) and i (∈ ω) represents some position within σ, is defined inductively

by

1. for any p ∈ Φ, (M, i) |= p iff si ∈ I(p),

2. (M, i) |= α ∧ β iff (M, i) |= α and (M, i) |= β,

3. (M, i) |= α ∨ β iff (M, i) |= α or (M, i) |= β,

4. (M, i) |= α→β iff (M, i) |= α implies (M, i) |= β,

5. (M, i) |= ¬α iff (M, i) 6|= α,

6. (M, i) |= Xα iff (M, i+ 1) |= α,

7. (M, i) |= Gα iff ∀j ≥ i[(M, j) |= α],

8. (M, i) |= Fα iff ∃j ≥ i[(M, j) |= α].

A formula α is valid in LTL if (M, 0) |= α for any model M := (σ, I).

.2.2 SLTL

Formulas of SLTL are obtained from that of LTL by adding [b] (sequence

modal operator) where b is a sequence. Sequences are constructed from

countable atomic sequences, ∅ (empty sequence) and ; (composition). Lower-

case letters b, c, ... are used for sequences. An expression [∅]α means α, and

expressions [∅ ; b]α and [b ; ∅]α mean [b]α. The set of sequences (including

∅) is denoted as SE. An expression [d] is used to represent [d0][d1] · · · [di]
with i ∈ ω, di ∈ SE and d0 ≡ ∅. Note that [d] can be the empty sequence.

Also, an expression d̂ is used to represent d0 ; d1 ; · · · ; di with i ∈ ω,

di ∈ SE and d0 ≡ ∅. Note that ˆ[d] means [d0 ; d1 ; · · · ; di], which differs

from [d].
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Definition 2.3. Formulas and sequences of SLTL are defined by the

following grammar, assuming p and e represent propositional variables and

atomic sequences, respectively:

α ::= p | α ∧ α | α ∨ α | α→α | ¬α | Xα | Gα | Fα | [b]α

b ::= e | ∅ | b ; b

Definition 2.4 (SLTL). Let S be a non-empty set of states. A structure

M := (σ, {I d̂}d̂∈SE) is a sequential model if

1. σ is an infinite sequence s0, s1, s2, ... of states in S,

2. I d̂ (d̂ ∈ SE) are mappings from the set Φ of propositional variables

to the power set of S.

Satisfaction relations (M, i) |=d̂ α (d̂ ∈ SE) for any formula α, where

M is a sequential model (σ, {I d̂}d̂∈SE) and i (∈ ω) represents some position

within σ, is defined inductively by

1. for any p ∈ Φ, (M, i) |=d̂ p iff si ∈ I d̂(p),

2. (M, i) |=d̂ α ∧ β iff (M, i) |=d̂ α and (M, i) |=d̂ β,

3. (M, i) |=d̂ α ∨ β iff (M, i) |=d̂ α or (M, i) |=d̂ β,

4. (M, i) |=d̂ α→β iff (M, i) |=d̂ α implies (M, i) |=d̂ β,

5. (M, i) |=d̂ ¬α iff (M, i) 6|=d̂ α,

6. (M, i) |=d̂ Xα iff (M, i+ 1) |=d̂ α,

7. (M, i) |=d̂ Gα iff ∀j ≥ i[(M, j) |=d̂ α],

8. (M, i) |=d̂ Fα iff ∃j ≥ i[(M, j) |=d̂ α].

9. (M, i) |=d̂ [b]α iff (M, i) |=d̂ ; b α.

A formula α is valid in SLTL if (M, 0) |=∅ α for any sequential model

M := (σ, {I d̂}d̂∈SE).

Some remarks on SLTL are addressed as follows.

1. SLTL is an extension of LTL since |=d̂ of SLTL includes |= of LTL.
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2. The following clauses hold for SLTL: For any sequences b, c, d̂ and k̂,

(a) (M, i) |=d̂ [b ; c]α iff (M, i) |=d̂ [b][c]α,

(b) (M, i) |=d̂ [k]α iff (M, i) |=d̂ ; k̂ α.

3. The following formulas are valid in SLTL: For any formulas α and β

and any b, c ∈ SE,

(a) [b](α ◦ β)↔ ([b]α) ◦ ([b]β) where ◦ ∈ {∧,∨,→},
(b) [b](]α)↔ ]([b]α) where ] ∈ {¬,X,G,F},
(c) [b ; c]α↔ [b][c]α,

(d) [d]α↔ ˆ[d]α.

.2.3 PSLTL

Formulas of PSLTL are obtained from that of SLTL by adding ∼ (para-

consistent negation).

Definition 2.5. Formulas and sequences of PSLTL are defined by the

following grammar, assuming p and e represent propositional variables and

atomic sequences, respectively:

α ::= p | α ∧ α | α ∨ α | α→α | ¬α | ∼α | Xα | Gα | Fα | [b]α

b ::= e | ∅ | b ; b

Definition 2.6 (PSLTL). Let S be a non-empty set of states. A struc-

ture M := (σ, {I+d̂}d̂∈SE, {I
−d̂}d̂∈SE) is a paraconsistent sequential model

if

1. σ is an infinite sequence s0, s1, s2, ... of states in S,

2. I∗d̂ (∗ ∈ {+,−}, d̂ ∈ SE) are mappings from the set Φ of propositional

variables to the power set of S.

Satisfaction relations (M, i) |=∗d̂ α (∗ ∈ {+,−}, d̂ ∈ SE) for any formula

α, where M is a paraconsistent sequential model (σ, {I+d̂}d̂∈SE, {I
−d̂}d̂∈SE)

and i (∈ ω) represents some position within σ, are defined by

1. for any p ∈ Φ, (M, i) |=+d̂ p iff si ∈ I+d̂(p),
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2. (M, i) |=+d̂ α ∧ β iff (M, i) |=+d̂ α and (M, i) |=+d̂ β,

3. (M, i) |=+d̂ α ∨ β iff (M, i) |=+d̂ α or (M, i) |=+d̂ β,

4. (M, i) |=+d̂ α→β iff (M, i) |=+d̂ α implies (M, i) |=+d̂ β,

5. (M, i) |=+d̂ ¬α iff (M, i) 6|=+d̂ α,

6. (M, i) |=+d̂ ∼α iff (M, i) |=−d̂ α,

7. (M, i) |=+d̂ Xα iff (M, i+ 1) |=+d̂ α,

8. (M, i) |=+d̂ Gα iff ∀j ≥ i[(M, j) |=+d̂ α],

9. (M, i) |=+d̂ Fα iff ∃j ≥ i[(M, j) |=+d̂ α],

10. for any p ∈ Φ, (M, i) |=−d̂ p iff si ∈ I−d̂(p),

11. (M, i) |=−d̂ α ∧ β iff (M, i) |=−d̂ α or (M, i) |=−d̂ β,

12. (M, i) |=−d̂ α ∨ β iff (M, i) |=−d̂ α and (M, i) |=−d̂ β,

13. (M, i) |=−d̂ α→β iff (M, i) |=+d̂ α and (M, i) |=−d̂ β,

14. (M, i) |=−d̂ ¬α iff (M, i) 6|=−d̂ α,

15. (M, i) |=−d̂ ∼α iff (M, i) |=+d̂ α,

16. (M, i) |=−d̂ Xα iff (M, i+ 1) |=−d̂ α,

17. (M, i) |=−d̂ Gα iff ∃j ≥ i[(M, j) |=−d̂ α],

18. (M, i) |=−d̂ Fα iff ∀j ≥ i[(M, j) |=−d̂ α],

19. for any ∗ ∈ {+,−}, (M, i) |=∗d̂ [b]α iff (M, i) |=∗(d̂ ; b) α.

A formula α is valid in PSLTL iff (M, 0) |=+∅ α for any paraconsistent

sequential model M := (σ, {I+d̂}d̂∈SE, {I
+d̂}d̂∈SE).

Some remarks on PSLTL are addressed as follows.

1. PSLTL is an extension of SLTL since |=∗d̂ of PSLTL includes |=d̂ of

SLTL.
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2. The following clauses hold for PSLTL: For any sequences b, c, d̂, k̂ and

any ∗ ∈ {+,−},

(a) (M, i) |=∗d̂ [b ; c]α iff (M, i) |=∗d̂ [b][c]α,

(b) (M, i) |=∗d̂ [k]α iff (M, i) |=∗(d̂ ; k̂) α.

3. F and G are duals of each other not only with respect to ¬ but also

with respect to ∼. X is a self dual not only with respect to ¬ but

also with respect to ∼. [b] is a self dual not only with respect to ¬
but also with respect to ∼. ¬ and ∼ are self-duals with respect to ∼
and ¬, respectively.

4. The falsification conditions for ¬ may be felt to be in need of some

justification. Suppose that a is a person who is neither rich nor poor

and that, as a matter of fact, no one is both rich and poor. Let

p stand for the claim that a is poor and r for the claim that a is

rich. Intuitively, a state definitely verifies p iff it falsifies r, and vice

versa. Suppose now that ¬p is indeed falsified at a state i in model

M : (M, i) |=−d̂ ¬p. This should mean that it is verified at i that p is

poor or neither poor or rich. But this is the case iff r is not verified

at i, which means that p is not falsified at i.

5. PSLTL can be regarded as a four-valued logic. The reason is presented

as follows. For any i ∈ ω, any d̂ ∈ SE and any formula α, we can take

one of the following four cases:

(a) α is verified at i, i.e., (M, i) |=+d̂ α,

(b) α is falsified at i, i.e., (M, i) |=−d̂ α,

(c) α is both verified and falsified at i, and

(d) α is neither verified nor falsified at i.

6. PSLTL is paraconsistent with respect to ∼. The reason is presented

as follows. Assume a paraconsistent sequential model

M := (σ, {I+d̂}d̂∈SE, {I
+d̂}d̂∈SE)

such that si ∈ I+d̂(p), si ∈ I−d̂(p) and si /∈ I+d̂(q) for a pair of distinct

propositional variables p and q. Then, (M, i) |=+d̂ (p ∧ ∼p)→q does

not hold.



PARACONSISTENT SEQUENTIAL LINEAR-TIME TEMPORAL LOGIC 13

Proposition 2.7. The following formulas are valid in PSLTL: For any

formulas α, β and any b, c ∈ SE,

1. ∼∼α↔ α,

2. ∼(α ∧ β)↔ ∼α ∨ ∼β,

3. ∼(α ∨ β)↔ ∼α ∧ ∼β,

4. ∼(α→β)↔ α ∧ ∼β,

5. ∼¬α↔ ¬∼α,

6. ∼Xα↔ X∼α,

7. ∼Fα↔ G∼α,

8. ∼Gα↔ F∼α,

9. [b](α ◦ β)↔ ([b]α) ◦ ([b]β) where ◦ ∈ {∧,∨,→},

10. [b](†α)↔ †([b]α) where † ∈ {¬,∼,X,G,F},

11. [b ; c]α↔ [b][c]α,

12. [d]α↔ ˆ[d]α.

Proof. We show only the following cases.

(5) : We show that ∼¬α ↔ ¬∼α is valid in PSLTL. (M, 0) |=+∅ ∼¬α
iff (M, 0) |=−∅ ¬α iff (M, 0) 6|=−∅ α iff (M, 0) 6|=+∅ ∼α iff (M, 0) |=+∅

¬∼α.

(8) : We show that ∼Gα↔ F∼α is valid in PSLTL. (M, 0) |=+∅ ∼Gα iff

(M, 0) |=−∅ Gα iff ∃j ≥ i[(M, 0) |=−∅ α] iff ∃j ≥ i[(M, 0) |=+∅ ∼α] iff

(M, 0) |=+∅ F∼α.

(10) : We show only the case that [b](∼α) ↔ ∼([b]α) is valid in PSLTL.

(M, 0) |=+∅ [b](∼α) iff (M, 0) |=+b ∼α iff (M, 0) |=−b α iff (M, 0) |=−∅
[b]α iff (M, 0) |=+∅ ∼([b]α).

�
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.3 Proof systems

.3.1 LTω

Greek capital letters Γ,∆, ... are used to represent finite (possibly empty)

sets of formulas. An expression Xiα for any i ∈ ω is defined inductively by

X0α ≡ α and Xn+1α ≡ XnXα. An expression XΓ is used to represent the

set {Xγ | γ ∈ Γ}. An expression of the form Γ⇒ ∆ is called a sequent. An

expression L ` S is used to denote the fact that a sequent S is provable

in a sequent calculus L. A rule R of inference is said to be admissible in a

sequent calculus L if the following condition is satisfied: for any instance

S1 · · ·Sn
S

of R, if L ` Si for all i, then L ` S.

Kawai’s sequent calculus LTω [26] for LTL is presented below.

Definition 3.1 (LTω). The initial sequents of LTω are of the form: for

any propositional variable p,

Xip⇒ Xip.

The structural rules of LTω are of the form:

Γ⇒ ∆, α α,Σ⇒ Π

Γ,Σ⇒ ∆,Π
(cut)

Γ⇒ ∆
α,Γ⇒ ∆

(we-left) Γ⇒ ∆
Γ⇒ ∆, α

(we-right).

The logical inference rules of LTω are of the form:

Γ⇒ Σ,Xiα Xiβ,∆⇒ Π

Xi(α→β),Γ,∆⇒ Σ,Π
(→left)

Xiα,Γ⇒ ∆,Xiβ

Γ⇒ ∆,Xi(α→β)
(→right)

Xiα,Γ⇒ ∆

Xi(α ∧ β),Γ⇒ ∆
(∧left1)

Xiβ,Γ⇒ ∆

Xi(α ∧ β),Γ⇒ ∆
(∧left2)

Γ⇒ ∆,Xiα Γ⇒ ∆,Xiβ

Γ⇒ ∆,Xi(α ∧ β)
(∧right)

Xiα,Γ⇒ ∆ Xiβ,Γ⇒ ∆

Xi(α ∨ β),Γ⇒ ∆
(∨left)
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Γ⇒ ∆,Xiα

Γ⇒ ∆,Xi(α ∨ β)
(∨right1)

Γ⇒ ∆,Xiβ

Γ⇒ ∆,Xi(α ∨ β)
(∨right2)

Γ⇒ ∆,Xiα

Xi¬α,Γ⇒ ∆
(¬left)

Xiα,Γ⇒ ∆

Γ⇒ ∆,Xi¬α
(¬right)

Xi+kα,Γ⇒ ∆

XiGα,Γ⇒ ∆
(Gleft)

{ Γ⇒ ∆,Xi+jα }j∈ω
Γ⇒ ∆,XiGα

(Gright)

{ Xi+jα,Γ⇒ ∆ }j∈ω
XiFα,Γ⇒ ∆

(Fleft)
Γ⇒ ∆,Xi+kα

Γ⇒ ∆,XiFα
(Fright).

Some remarks on LTω are addressed as follows.

1. The rules (Gright) and (Fleft) have infinite premises.

2. The following rule is admissible in cut-free LTω:

Γ⇒ ∆
XΓ⇒ X∆

(reguX).

3. The sequents of the form: Xiα⇒ Xiα for any formula α are prov-

able in cut-free LTω. This fact can be proved by induction on the

complexity of α.

4. The cut-elimination and completeness theorems for LTω were proved

by Kawai [26].

.3.2 SLTω

An expression [b]Γ is used to represent the set {[b]γ | γ ∈ Γ}. The symbol

K is used to represent the set {X} ∪ {[b] | b ∈ SE}, and the symbol K∗ is

used to represent the set of all words of finite length of the alphabet K.

For example, Xi[b]Xj [c] is in K∗. Remark that K∗ includes ∅, and hence

{†α | † ∈ K∗} includes α. An expression ] is used to represent an arbitrary

member of K∗.

A sequent calculus SLTω for SLTL is then introduced below.

Definition 3.2 (SLTω). The initial sequents of SLTω are of the form:

for any propositional variable p,

]p⇒ ]p.
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The structural rules of SLTω are (cut), (we-left) and (we-right) in Def-

inition 3.1.

The logical inference rules of SLTω are of the form:

Γ⇒ Σ, ]α ]β,∆⇒ Π

](α→β),Γ,∆⇒ Σ,Π
(→lefts)

]α,Γ⇒ ∆, ]β

Γ⇒ ∆, ](α→β)
(→rights)

]α,Γ⇒ ∆

](α ∧ β),Γ⇒ ∆
(∧left1s)

]β,Γ⇒ ∆

](α ∧ β),Γ⇒ ∆
(∧left2s)

Γ⇒ ∆, ]α Γ⇒ ∆, ]β

Γ⇒ ∆, ](α ∧ β)
(∧rights)

]α,Γ⇒ ∆ ]β,Γ⇒ ∆

](α ∨ β),Γ⇒ ∆
(∨lefts)

Γ⇒ ∆, ]α

Γ⇒ ∆, ](α ∨ β)
(∨right1s)

Γ⇒ ∆, ]β

Γ⇒ ∆, ](α ∨ β)
(∨right2s)

Γ⇒ ∆, ]α

]¬α,Γ⇒ ∆
(¬lefts)

]α,Γ⇒ ∆

Γ⇒ ∆, ]¬α (¬rights)

]Xkα,Γ⇒ ∆

]Gα,Γ⇒ ∆
(Glefts)

{ Γ⇒ ∆, ]Xjα }j∈ω
Γ⇒ ∆, ]Gα

(Grights)

{ ]Xjα,Γ⇒ ∆ }j∈ω
]Fα,Γ⇒ ∆

(Flefts)
Γ⇒ ∆, ]Xkα

Γ⇒ ∆, ]Fα
(Frights)

][b]Xα,Γ⇒ ∆

]X[b]α,Γ⇒ ∆
(Xleft)

Γ⇒ ∆, ][b]Xα

Γ⇒ ∆, ]X[b]α
(Xright).

The sequence inference rules of SLTω are of the form:

][b][c]α,Γ⇒ ∆

][b ; c]α,Γ⇒ ∆
(;left)

Γ⇒ ∆, ][b][c]α

Γ⇒ ∆, ][b ; c]α
(;right).

Some remarks on SLTω are addressed as follows.

1. The sequents of the form ]α⇒ ]α for any formula α are provable in

cut-free SLTω. This fact can be proved by induction on the complex-

ity of α.

2. The following rules are admissible in cut-free SLTω:

Γ⇒ ∆
XΓ⇒ X∆

(reguX)
Γ⇒ ∆

[d]Γ⇒ [d]∆
(regu[d])

]X[b]α,Γ⇒ ∆

][b]Xα,Γ⇒ ∆
(Xleft−1)

Γ⇒ ∆, ]X[b]α

Γ⇒ ∆, ][b]Xα
(Xright−1).
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.3.3 PSLTω

A sequent calculus PSLTω for PSLTL is introduced below.

Definition 3.3 (PSLTω). PSLTω is obtained from SLTω by adding the

initial sequents of the form: for any propositional variable p,

]∼p⇒ ]∼p,

and adding the logical and sequence inference rules of the form:

]∼α,Γ⇒ ∆

∼]α,Γ⇒ ∆
(∼]left)

Γ⇒ ∆, ]∼α
Γ⇒ ∆,∼]α (∼]right)

]α,Γ⇒ ∆

]∼∼α,Γ⇒ ∆
(∼∼left)

Γ⇒ ∆, ]α

Γ⇒ ∆, ]∼∼α (∼∼right)

]α,Γ⇒ ∆

]∼(α→β),Γ⇒ ∆
(∼→left1)

]∼β,Γ⇒ ∆

]∼(α→β),Γ⇒ ∆
(∼→left2)

Γ⇒ ∆, ]α Γ⇒ ∆, ]∼β
Γ⇒ ∆, ]∼(α→β)

(∼→right)
]∼α,Γ⇒ ∆ ]∼β,Γ⇒ ∆

]∼(α ∧ β),Γ⇒ ∆
(∼ ∧ left)

Γ⇒ ∆, ]∼α
Γ⇒ ∆, ]∼(α ∧ β)

(∼ ∧ right1)
Γ⇒ ∆, ]∼β

Γ⇒ ∆, ]∼(α ∧ β)
(∼ ∧ right2)

]∼α,Γ⇒ ∆

]∼(α ∨ β),Γ⇒ ∆
(∼ ∨ left1)

]∼β,Γ⇒ ∆

]∼(α ∨ β),Γ⇒ ∆
(∼ ∨ left2)

Γ⇒ ∆, ]∼α Γ⇒ ∆, ]∼β
Γ⇒ ∆, ]∼(α ∨ β)

(∼ ∨ right)

Γ⇒ ∆, ]∼α
]∼¬α,Γ⇒ ∆

(∼¬left)
]∼α,Γ⇒ ∆

Γ⇒ ∆, ]∼¬α (∼¬right)

{ ]Xj∼α,Γ⇒ ∆ }j∈ω
]∼Gα,Γ⇒ ∆

(∼Gleft)
Γ⇒ ∆, ]Xk∼α
Γ⇒ ∆, ]∼Gα

(∼Gright)

]Xk∼α,Γ⇒ ∆

]∼Fα,Γ⇒ ∆
(∼Fleft)

{ Γ⇒ ∆, ]Xj∼α }j∈ω
Γ⇒ ∆, ]∼Fα

(∼Fright)

]∼[b][c]α,Γ⇒ ∆

]∼[b ; c]α,Γ⇒ ∆
(∼;left)

Γ⇒ ∆, ]∼[b][c]α

Γ⇒ ∆, ]∼[b ; c]α
(∼;right).
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Proposition 3.4. The following rules are admissible in cut-free PSLTω:

Γ⇒ ∆
XΓ⇒ X∆

(reguX)
Γ⇒ ∆

[d]Γ⇒ [d]∆
(regu[d])

]X[b]α,Γ⇒ ∆

][b]Xα,Γ⇒ ∆
(Xleft−1)

Γ⇒ ∆, ]X[b]α

Γ⇒ ∆, ][b]Xα
(Xright−1)

∼]α,Γ⇒ ∆

]∼α,Γ⇒ ∆
(∼]left−1)

Γ⇒ ∆,∼]α
Γ⇒ ∆, ]∼α (∼]right−1).

Proof. We show only the case for (regu[d]) by induction on the proofs

P of Γ⇒ ∆ in cut-free PSLTω. We distinguish the cases according to the

last inference of P , and show some cases.

1. Case (∼;right): The last inference of P is of the form:

Γ⇒ ∆, ]∼[k][b][c]α

Γ⇒ ∆, ]∼[k][b ; c]α
(∼;right).

By induction hypothesis, we obtain the required fact:

....
[d]Γ⇒ [d]∆, [d]]∼[k][b][c]α

[d]Γ⇒ [d]∆, [d]]∼[k][b ; c]α
(∼;right)

where [d]] can be regarded also as ] since [d]] is in K∗.

2. Case (→lefts): The last inference of P is of the form:

Γ⇒ Σ, ]α ]β,∆⇒ Π

](α→β),Γ,∆⇒ Σ,Π
(→lefts).

By induction hypothesis, we obtain the required fact:

....
[d]Γ⇒ [d]Σ, [d]]α

....
[d]]β, [d]∆⇒ [d]Π

[d]](α→β), [d]Γ, [d]∆⇒ [d]Σ, [d]Π
(→lefts)

where [d]] can be regarded also as ] since [d]] is in K∗. �
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Proposition 3.5. The sequents of the form ]α⇒ ]α for any formula

α are provable in cut-free PSLTω.

Proof. By induction on the complexity of α. We show only some cases.

1. Case α ≡ ∼β: We can obtain PSLTω ` ∼β ⇒ ∼β by induction on

the complexity of β. Then, we obtain the required fact PSLTω `
]∼β ⇒ ]∼β by:

....
∼β ⇒ ∼β.... (∗)
]∼β ⇒ ]∼β

where (∗) represents some applications of inference rules in PSLTω

including some admissible inference rules presented in Proposition

3.4.

2. Case α ≡ [b]β: We can obtain PSLTω ` [b]β ⇒ [b]β by induction

on the complexity of β. To show this, we use the admissible rule

([d]regu) presented in Proposition 3.4. Then, we obtain the required

fact PSLTω ` ][b]β ⇒ ][b]β by:

....
[b]β ⇒ [b]β

.... (∗)
][b]β ⇒ ][b]β

where (∗) represents some applications of inference rules in PSLTω

including some admissible inference rules presented in Proposition 3.4.

�

An expression α⇔ β means α⇒ β and β ⇒ α.

Proposition 3.6. The following sequents are provable in PSLTω: For

any formulas α, β and any b, c ∈ SE,

1. ∼∼α⇔ α,

2. ∼(α ∧ β)⇔ ∼α ∨ ∼β,

3. ∼(α ∨ β)⇔ ∼α ∧ ∼β,
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4. ∼(α→β)⇔ α ∧ ∼β,

5. ∼¬α⇔ ¬∼α,

6. ∼Xα⇔ X∼α,

7. ∼Fα⇔ G∼α,

8. ∼Gα⇔ F∼α,

9. [b](α ◦ β)⇔ ([b]α) ◦ ([b]β) where ◦ ∈ {∧,∨,→},

10. [b](]α)⇔ ]([b]α) where ] ∈ {¬,∼,X,G,F},

11. [b ; c]α⇔ [b][c]α,

12. [d]α⇔ ˆ[d]α.

Proof. We show only the following cases.

(5) :
....∼α⇒ ∼α

⇒ ¬∼α,∼α (¬rights)

∼¬α⇒ ¬∼α (∼¬left)

....∼α⇒ ∼α
⇒ ∼¬α,∼α (∼¬right)

¬∼α⇒ ∼¬α (¬lefts)

(8) :

....
{Xj∼α⇒ Xj∼α}j∈ω
{Xj∼α⇒ F∼α}j∈ω

(Frights)

∼Gα⇒ F∼α (∼Gleft)

....
{Xj∼α⇒ Xj∼α}j∈ω
{Xj∼α⇒ ∼Gα}j∈ω

(∼Gright)

F∼α⇒ ∼Gα
(Flefts)

(10) : We show the cases ] ≡ ∼ and ] ≡ ¬ below.

Case (] ≡ ∼):

....
[b](∼α)⇒ [b](∼α)

[b](∼α)⇒ ∼([b]α)
(∼]right)

....
[b](∼α)⇒ [b](∼α)

∼([b]α)⇒ [b](∼α)
(∼]left)
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Case (] ≡ ¬):

....
[b]α⇒ [b]α

⇒ ¬([b]α), [b]α
(¬rights)

[b](¬α)⇒ ¬([b]α)
(¬lefts)

....
[b]α⇒ [b]α

[b]α,¬([b]α)⇒ (¬rights)

¬([b]α)⇒ [b](¬α)
(¬lefts)

�

.3.4 Hilbert-type systems

Hilbert-type axiomatic systems H-PSLTL, H-PLTL, H-SLTL and H-LTL

for PSLTL, PLTL, SLTL and LTL, respectively, are presented below. For

typical Hilbert-style axiomatizations of LTL, see, e.g., [9, 3]. H-LTL is from

[3].

Definition 3.7 (H-PSLTL, H-PLTL, H-SLTL and H-LTL). Let F be

defined by Fα := ¬G¬α.

H-LTL is obtained from the axiom schemes and inference rules of the

propositional classical logic by adding the inference rules and axiom schemes

of the form:
α

Xβ
(X) α

Gβ
(G)

1. X(α→β)→(Xα→Xβ),

2. G(α→β)→(Gα→Gβ),

3. ¬Xα↔ X¬α,

4. Gα→α,

5. Gα→XGα,

6. α→(G(α→Xα)→Gα).

H-PLTL is obtained from H-LTL by adding the axioms schemes of the

form:
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1. ∼∼α↔ α,

2. ∼¬α↔ ¬∼α,

3. ∼(α ∧ β)↔ ∼α ∨ ∼β,

4. ∼(α ∨ β)↔ ∼α ∧ ∼β,

5. ∼(α→β)↔ α ∧ ∼β,

6. ∼Xα↔ X∼α,

7. ∼Fα↔ G∼α,

8. ∼Gα↔ F∼α.

H-SLTL is obtained from H-LTL by adding the inference rule and ax-

ioms schemes of the form: For any b, c ∈ SE,

α
[b]β

([b])

1. [b](α ◦ β)↔ ([b]α) ◦ ([b]β) where ◦ ∈ {∧,∨,→},

2. [b](†α)↔ †([b]α) where † ∈ {¬,∼,X,G,F},

3. [b ; c]α↔ [b][c]α.

H-PSLTL is obtained from H-PLTL by adding the above presented in-

ference rule and axioms schemes of H-SLTL.

.4 Main results

.4.1 Semantical embedding and decidability

Definition 4.1 (Translation from SLTL into LTL). Let Φ be a non-

empty set of propositional variables and Φd̂ be the set {pd̂ | p ∈ Φ} (d̂ ∈ SE)

of propositional variables where p∅ := p (i.e., Φ∅ := Φ). The language Ls
(the set of formulas) of SLTL is defined using Φ, [b], ∧,∨,→,¬, X, F and

G. The language L of LTL is obtained from Ls by adding Φd̂ and deleting

[b].

A mapping f from Ls to L is defined by:
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1. for any p ∈ Φ, f( ˆ[d]p) := pd̂ ∈ Φd̂, esp., f(p) = p ∈ Φ∅,

2. f(](α ◦ β)) := f(]α) ◦ f(]β) where ◦ ∈ {∧,∨,→},

3. f(]†α) := †f(]α) where † ∈ {¬,X,G,F},

4. f(][d][b]α) := f(][d̂ ; b]α).

An expression f(Γ) denotes the result of replacing every occurrence of

a formula α in Γ by an occurrence of f(α).

Some remarks on the mapping f in Definition 4.1 are addressed as

follows.

1. We can obtain the condition:

f(][d][b][c]α) = f(][d][b ; c]α)

by using the condition 4 repeatedly:

f(][d][b][c]α)

= f(][d̂ ; b][c]α)

= f(][d̂ ; b ; c])

= f(][d][b ; c]α).

2. The following is an example of the translation of the formula [b1]([b2 ; b3]p1∧
([b4]p2∨[b5 ; b6]p3)) where p1, p2 and p3 are distinct propositional vari-

ables, and b1, b2, b3, b4, b5 and b6 are distinct atomic sequences.

f([b1]([b2 ; b3]p1 ∧ ([b4]p2 ∨ [b5 ; b6]p3)))

= f([b1][b2 ; b3]p1) ∧ f([b1]([b4]p2 ∨ [b5 ; b6]p3))

= f([b1][b2 ; b3]p1) ∧ (f([b1][b4]p2) ∨ f([b1][b5 ; b6]p3))

= f([b1 ; b2 ; b3]p1) ∧ (f([b1 ; b4]p2) ∨ f([b1 ; b5 ; b6]p3))

= p
b1 ; b2 ; b3
1 ∧ (p

b1 ; b4
2 ∨ pb1 ; b5 ; b6

3 ).

Proposition 4.2 ([14, 23]). Let f be the mapping defined in Definition

4.1.

1. (Semantical embedding): For any formula α, α is valid in SLTL iff

f(α) is valid in LTL.
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2. (Syntactical embedding): For any sets Γ and ∆ of formulas in Ls,

(a) SLTω ` Γ⇒ ∆ iff LTω ` f(Γ)⇒ f(∆),

(b) SLTω − (cut) ` Γ⇒ ∆ iff LTω − (cut) ` f(Γ)⇒ f(∆).

3. (Cut-elimination): The rule (cut) is admissible in cut-free SLTω.

4. (Completeness): For any formula α, SLTω ` ⇒ α iff α is valid in

SLTL.

We now introduce a translation of PSLTL into SLTL, and by using

this translation, we show some theorems for embedding PSLTL into SLTL.

A similar translation has been used by Vorob’ev [31], Gurevich [10], and

Rautenberg [30] to embed Nelson’s three-valued constructive logic [1, 27]

into intuitionistic logic.

Definition 4.3 (Translation from PSLTL into SLTL). Let Φ be a non-

empty set of propositional variables and Φ′ be the set {p′ | p ∈ Φ} of

propositional variables. The language Lps (the set of formulas) of PSLTL

is defined using Φ, ∼,→,∧,∨,¬, X, F, G and [b]. The language Ls of SLTL

is obtained from Lps by adding Φ′ and deleting ∼.

A mapping g from Lps to Ls is defined by

1. for any p ∈ Φ, g(p) := p and g(∼p) := p′ ∈ Φ′,

2. g(α ◦ β) := g(α) ◦ g(β) where ◦ ∈ {∧,∨,→},

3. g(†α) := †g(α) where † ∈ {¬,X,F,G, [b]},

4. g(∼∼α) := g(α),

5. g(∼†α) := †g(∼α) where † ∈ {¬,X, [b]},

6. g(∼(α ∧ β)) := g(∼α) ∨ g(∼β),

7. g(∼(α ∨ β)) := g(∼α) ∧ g(∼β),

8. g(∼(α→β)) := g(α) ∧ g(∼β),

9. g(∼Fα) := Gg(∼α),

10. g(∼Gα) := Fg(∼α).
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We have: g(]α) = ]g(α) for any formula α and any ] ∈ K∗.

Lemma 4.4. Let g be the mapping defined in Definition 4.3, and S be

a non-empty set of states. For any paraconsistent sequential model M :=

(σ, {I+d̂}d̂∈SE, {I−d̂}d̂∈SE) of PSLTL, any satisfaction relations |=∗d̂ (∗ ∈
{+,−}, d̂ ∈ SE) on M , and any state si in σ, we can construct a sequential

model N := (σ, {I d̂}d̂∈SE) of SLTL and satisfaction relations |=d̂ on N such

that for any formula α in Lps,

1. (M, i) |=+d̂ α iff (N, i) |=d̂ g(α).

2. (M, i) |=−d̂ α iff (N, i) |=d̂ g(∼α).

Proof. Let Φ be a non-empty set of propositional variables and Φ′

be the set {p′ | p ∈ Φ} of propositional variables. Suppose that M is a

paraconsistent sequential model (σ, {I+d̂}d̂∈SE, {I−d̂}d̂∈SE) where

I+d̂ and I−d̂ are mappings from Φ to the power set of S.

Suppose that N is a sequential model (σ, {I d̂}d̂∈SE) where

I d̂ are mappings from Φ ∪ Φ′ to the power set of S.

Suppose moreover that M and N satisfy the following conditions: for any

si in σ and any p ∈ Φ,

1. si ∈ I+d̂(p) iff si ∈ I d̂(p),

2. si ∈ I−d̂(p) iff si ∈ I d̂(p′).

The lemma is then proved by (simultaneous) induction on the complex-

ity of α.

• Base step:

Case α ≡ p ∈ Φ: For (1), we obtain: (M, i) |=+d̂ p iff si ∈ I+d̂(p)

iff si ∈ I d̂(p) iff (N, i) |=d̂ p iff (N, i) |=d̂ g(p) (by the definition

of g). For (2), we obtain: (M, i) |=−d̂ p iff si ∈ I−d̂(p) iff

si ∈ I d̂(p′) iff (N, i) |=d̂ p′ iff (N, i) |=d̂ g(∼p) (by the definition

of g).

• Induction step: We show some cases.
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1. Case α ≡ β∧γ: For (1), we obtain: (M, i) |=+d̂ β∧γ iff (M, i) |=+d̂ β

and (M, i) |=+d̂ γ iff (N, i) |=d̂ g(β) and (N, i) |=d̂ g(γ) (by induction

hypothesis for 1) iff (N, i) |=d̂ g(β)∧g(γ) iff (N, i) |=d̂ g(β∧γ) (by the

definition of g). For (2), we obtain: (M, i) |=−d̂ β∧γ iff (M, i) |=−d̂ β
or (M, i) |=−d̂ γ iff (N, i) |=d̂ g(∼β) or (N, i) |=d̂ g(∼γ) (by induction

hypothesis for 2) iff (N, i) |=d̂ g(∼β)∨g(∼γ) iff (N, i) |=d̂ g(∼(β∧γ))

(by the definition of g).

2. Case α ≡ β→γ: For (1), we obtain: (M, i) |=+d̂ β→γ iff (M, i) |=+d̂

β implies (M, i) |=+d̂ γ iff (N, i) |=d̂ g(β) implies (N, i) |=d̂ g(γ)

(by induction hypothesis for 1) iff (N, i) |=d̂ g(β)→g(γ) iff (N, i) |=d̂

g(β→γ) (by the definition of g). For (2), we obtain: (M, i) |=−d̂ β→γ
iff (M, i) |=+d̂ β and (M, i) |=−d̂ γ iff (N, i) |=d̂ g(β) and (N, i) |=d̂

g(∼γ) (by induction hypothesis for 1 and 2) iff (N, i) |=d̂ g(β)∧g(∼γ)

iff (N, i) |=d̂ g(∼(β→γ)) (by the definition of g).

3. Case α ≡ ∼β: For (1), we obtain: (M, i) |=+d̂ ∼β iff (M, i) |=−d̂ β iff

(N, i) |=d̂ g(∼β) (by induction hypothesis for 2). For (2), we obtain:

(M, i) |=−d̂ ∼β iff (M, i) |=+d̂ β iff (N, i) |=d̂ g(β) (by induction

hypothesis for 1) iff (N, i) |=d̂ g(∼∼β) (by the definition of g).

4. Case α ≡ Xβ: For (1), we obtain: (M, i) |=+d̂ Xβ iff (M, i+1) |=+d̂ β

iff (N, i + 1) |=d̂ g(β) (by induction hypothesis for 1) iff (N, i) |=d̂

Xg(β) iff (N, i) |=d̂ g(Xβ) (by the definition of g). For (2), we obtain:

(M, i) |=−d̂ Xβ iff (M, i + 1) |=−d̂ β iff (N, i + 1) |=d̂ g(∼β) (by

induction hypothesis for 2) iff (N, i) |=d̂ Xg(∼β) iff (N, i) |=d̂ g(∼Xβ)

(by the definition of g).

5. Case α ≡ Gβ: For (1), we obtain: (M, i) |=+d̂ Gβ iff ∀j ≥ i[(M, j) |=+d̂

β] iff ∀j ≥ i[(N, j) |=d̂ g(β)] (by induction hypothesis for 1) iff

(N, i) |=d̂ Gg(β) iff (N, i) |=d̂ g(Gβ) (by the definition of g). For

(2), we obtain: (M, i) |=−d̂ Gβ iff ∃j ≥ i[(M, j) |=−d̂ β] iff ∃j ≥
i[(N, j) |=d̂ g(∼β)] (by induction hypothesis for 2) iff (N, i) |=d̂

Fg(∼β) iff (N, i) |=d̂ g(∼Gβ)) (by the definition of g).

6. Case α ≡ [b]β: For (1), we obtain: (M, i) |=+d̂ [b]β iff (M, i) |=+(d̂ ; b)

β iff (N, i) |=d̂ ; b g(β) (by induction hypothesis for 1) iff (N, i) |=d̂

[b]g(β) iff (N, i) |=d̂ g([b]β) (by the definition of g). For (2), we

obtain: (M, i) |=−d̂ [b]β iff (M, i) |=−(d̂ ; b) β iff (N, i) |=d̂ ; b g(∼β)
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(by induction hypothesis for 2) iff (N, i) |=d̂ [b]g(∼β) iff (N, i) |=d̂

g(∼[b]β) (by the definition of g). �

Lemma 4.5. Let g be the mapping defined in Definition 4.3, and S be

a non-empty set of states. For any sequential model N := (σ, {I d̂}d̂∈SE) of

SLTL and any satisfaction relations |=d̂ (d̂ ∈ SE) on N , and any state si in

σ, we can construct a paraconsistent sequential model M := (σ, {I+d̂}d̂∈SE,

{I−d̂}d̂∈SE) of PSLTL and satisfaction relations |=∗d̂ (∗ ∈ {+,−}, d̂ ∈ SE)

on M such that

1. (M, i) |=+d̂ α iff (N, i) |=d̂ g(α).

2. (M, i) |=−d̂ α iff (N, i) |=d̂ g(∼α).

Proof. Similar to the proof of Lemma 4.4. �

Theorem 4.6 (Semantical embedding from PSLTL into SLTL). Let g

be the mapping defined in Definition 4.3. For any formula α,

α is valid in PSLTL iff g(α) is valid in SLTL.

Proof. By Lemmas 4.4 and 4.5. �

Theorem 4.7 (Semantical embedding from PSLTL into LTL). Let f

and g be the mappings defined in Definitions 4.1 and 4.3, respectively. For

any formula α,

α is valid in PSLTL iff fg(α) is valid in LTL.

Proof. By Proposition 4.2 (1) and Theorem 4.6. �

Theorem 4.8 (Decidability). PSLTL is decidable.

Proof. By decidability of LTL, for each α, it is possible to decide if

fg(α) is valid in LTL. Then, by Theorem 4.7, PSLTL is also decidable. �
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.4.2 Syntactical embedding, cut-elimination and completeness

Theorem 4.9 (Weak syntactical embedding from PSLTω into SLTω).

Let Γ and ∆ be sets of formulas in Lps, and g be the mapping defined in

Definition 4.3. Then:

1. If PSLTω ` Γ⇒ ∆, then SLTω ` g(Γ)⇒ g(∆).

2. If SLTω − (cut) ` g(Γ)⇒ g(∆), then PSLTω − (cut) ` Γ⇒ ∆.

Proof. • (1) : By induction on the proofs P of Γ⇒ ∆ in PSLTω. We

distinguish the cases according to the last inference of P , and show some

cases.

1. Case (]∼p⇒ ]∼p): The last inference of P is of the form: ]∼p⇒ ]∼p.
In this case, we obtain the required fact LTω ` g(]∼p)⇒ g(]∼p), since

g(]∼p) coincides with ]p′ by the definition of g.

2. Case (∼∼left): The last inference of P is of the form:

]α,Γ⇒ ∆

]∼∼α,Γ⇒ ∆
(∼∼left).

By induction hypothesis, we have the required fact:

SLTω ` g(]α), g(Γ)⇒ g(∆)

where g(]α) coincides with g(]∼∼α) by the definition of g.

3. Case (∼¬left): The last inference of P is of the form:

Γ⇒ ∆, ]∼α
]∼¬α,Γ⇒ ∆

(∼¬left).

By induction hypothesis, we have: SLTω ` g(Γ)⇒ g(∆), g(]∼α) where

g(]∼α) coincides with ]g(∼α) by the definition of g. Then, we obtain:

....
g(Γ)⇒ g(∆), ]g(∼α)

]¬g(∼α), g(Γ)⇒ g(∆)
(∼¬lefts)

where ]¬g(∼α) coincides with g(]∼¬α) by the definition of g.
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4. Case (∼→right): The last inference of P is of the form:

Γ⇒ ∆, ]α Γ⇒ ∆, ]∼β
Γ⇒ ∆, ]∼(α→β)

(∼→right).

By induction hypothesis, we have: SLTω ` g(Γ)⇒ g(∆), g(]α) and

SLTω ` g(Γ) ⇒ g(∆), g(]∼β) where g(]α) and g(]∼β) respectively

coincide with ]g(α) and ]g(∼β) by the definition of g. Then, we

obtain:

....
g(Γ)⇒ g(∆), ]g(α)

....
g(Γ)⇒ g(∆), ]g(∼β)

g(Γ)⇒ g(∆), ](g(α) ∧ g(∼β))
(∧right)

where ](g(α) ∧ g(∼β)) coincides with g(]∼(α→β)) by the definition

of g.

5. Case (∼Gleft): The last inference of P is of the form:

{ ]Xj∼α,Γ⇒ ∆ }j∈ω
]∼Gα,Γ⇒ ∆

(∼Gleft).

By induction hypothesis, we have: SLTω ` g(]Xj∼α), g(Γ)⇒ g(∆)

for any j ∈ ω, where g(]Xj∼α) coincides with ]Xjg(∼α) by the defi-

nition of g. Then, we obtain:

....
{ ]Xjg(∼α), g(Γ)⇒ g(∆) }j∈ω

]Fg(∼α), g(Γ)⇒ g(∆)
(Flefts)

where ]Fg(∼α) coincides with g(]∼Gα) by the definition of g.

6. Case (∼]left): The last inference of P is of the form:

]∼α,Γ⇒ ∆

∼]α,Γ⇒ ∆
(∼]left).

By induction hypothesis, we have the required fact:

SLTω ` g(]∼α), g(Γ)⇒ g(∆)

where g(]∼α) coincides with g(∼]α) by the definition of g.
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7. Case (∼;left): The last inference of P is of the form:

]∼[b][c]α,Γ⇒ ∆

]∼[b ; c]α,Γ⇒ ∆
(∼;left).

By induction hypothesis, we have: SLTω ` g(]∼[b][c]α), g(Γ)⇒ g(∆)

where g(]∼[b][c]α) coincides with ]∼[b][c]g(α) by the definition of g.

Then, we obtain:

....
]∼[b][c]g(α), g(Γ)⇒ g(∆)

]∼[b ; c]g(α), g(Γ)⇒ g(∆)
(∼;left)

where ]∼[b ; c]g(α) coincides with g(]∼[b ; c]α) by the definition of g.

• (2) : By induction on the proofs Q of g(Γ)⇒ g(∆) in cut-free SLTω.

We distinguish the cases according to the last inference of Q, and show

some cases.

1. Case (Glefts): The last inference of Q is (Glefts).

Subcase (1): The last inference of Q is of the form:

]Xkg(α), g(Γ)⇒ g(∆)

]Gg(α), g(Γ)⇒ g(∆)
(Glefts)

where ]Xkg(α) and ]Gg(α) respectively coincide with g(]Xkα) and

g(]Gα) by the definition of g. By induction hypothesis, we have:

PSLTω − (cut) ` ]Xkα,Γ⇒ ∆, and hence obtain the required fact:

....
]Xkα,Γ⇒ ∆

]Gα,Γ⇒ ∆
(Glefts).

Subcase (2): The last inference of Q is of the form:

]Xkg(∼α), g(Γ)⇒ g(∆)

]Gg(∼α), g(Γ)⇒ g(∆)
(Glefts)
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where ]Xkg(∼α) and ]Gg(∼α) respectively coincide with g(]Xk∼α)

and g(]∼Fα) by the definition of g. By induction hypothesis, we have:

PSLTω − (cut) ` ]Xk∼α,Γ⇒ ∆, and hence obtain the required fact:

....
]Xk∼α,Γ⇒ ∆

]∼Fα,Γ⇒ ∆
(∼Fleft).

2. Case (;left): The last inference of Q is (;left).

Subcase (1): The last inference of Q is of the form:

][b][c]g(α), g(Γ)⇒ g(∆)

][b ; c]g(α), g(Γ)⇒ g(∆)
(;left)

where ][b][c]g(α) and ][b ; c]g(α) respectively coincide with g(][b][c]α)

and g(][b ; c]α) by the definition of g. By induction hypothesis, we

have: PSLTω − (cut) ` ][b][c]α,Γ⇒ ∆, and hence obtain the required

fact: ....
][b][c]α,Γ⇒ ∆

][b ; c]α,Γ⇒ ∆
(;left).

Subcase (2): The last inference of Q is of the form:

][b][c]g(∼α), g(Γ)⇒ g(∆)

][b ; c]g(∼α), g(Γ)⇒ g(∆)
(;left)

where ][b][c]g(∼α) and ][b ; c]g(∼α) coincide with g(]∼[b][c]α) and

g(]∼[b ; c]α), respectively, by the definition of g. By induction hy-

pothesis, we have: PSLTω − (cut) ` ]∼[b][c]α,Γ⇒ ∆, and hence

obtain the required fact:

....
]∼[b][c]α,Γ⇒ ∆

]∼[b ; c]α,Γ⇒ ∆
(∼;left).

�
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Theorem 4.10 (Cut-elimination). The rule (cut) is admissible in cut-

free PSLTω.

Proof. Suppose PSLTω ` Γ⇒ ∆. Then, we have SLTω ` f(Γ)⇒ f(∆)

by Theorem 4.9 (1), and hence SLTω − (cut) ` f(Γ)⇒ f(∆) by Proposition

4.2 (3). By Theorem 4.9 (2), we obtain PSLTω − (cut) ` Γ⇒ ∆. �

Theorem 4.11 (Syntactical embedding from PSLTω into SLTω). Let Γ

and ∆ be sets of formulas in Lps, and g be the mapping defined in Definition

4.3. Then:

1. PSLTω ` Γ⇒ ∆ iff SLTω ` g(Γ)⇒ g(∆).

2. PSLTω − (cut) ` Γ⇒ ∆ iff SLTω − (cut) ` g(Γ)⇒ g(∆).

Proof.

1. (=⇒): By Theorem 4.9 (1). (⇐=): Suppose SLTω ` g(Γ)⇒ g(∆).

We then have SLTω − (cut) ` g(Γ)⇒ g(∆) by Proposition 4.2 (3).

Thus, we obtain PSLTω − (cut) ` Γ⇒ ∆ by Theorem 4.9 (2). There-

fore we have PSLTω ` Γ⇒ ∆.

2. (=⇒): Suppose PSLTω − (cut) ` Γ⇒ ∆. Then we have PSLTω `
Γ⇒ ∆. We then obtain SLTω ` g(Γ)⇒ g(∆) by Theorem 4.9 (1).

Therefore we obtain SLTω − (cut) ` g(Γ)⇒ g(∆) by Proposition 4.2

(3). (⇐=): By Theorem 4.9 (2). �

Theorem 4.12 (Syntactical embedding from PSLTω into LTω). Let Γ

and ∆ be sets of formulas in Lps. Let f and g be the mappings defined in

Definitions 4.1 and 4.3, respectively. Then:

1. PSLTω ` Γ⇒ ∆ iff SLTω ` fg(Γ)⇒ fg(∆).

2. PSLTω − (cut) ` Γ⇒ ∆ iff SLTω − (cut) ` fg(Γ)⇒ fg(∆).

Proof. By Proposition 4.2 (2) and Theorem 4.11. �

Theorem 4.13 (Completeness). For any formula α, PSLTω ` ⇒ α

iff α is valid in PSLTL.

Proof. PSLTω ` ⇒ α iff SLTω ` ⇒ g(α) (by Theorem 4.11) iff g(α) is

valid in SLTL (by Proposition 4.2 (4)) iff α is valid in PSLTL (by Theorem

4.6). �
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.4.3 Translation examples

We provide an algorithm for translating a PSLTL-formula into an LTL-

formula.

Algorithm 4.14. Let α be a PSLTL-formula. Then, we obtain an

LTL-formula fg(α) by the following steps.

1. We translate the PSLTL-formula α into an SLTL-formula g(α) by

using the translation function g defined in Definition 4.3.

(a) For α, we apply the condition of g which corresponds to the

outer-most PSLTL-connective of α.

(b) The resulting formula expression β is of the form g(α1) ◦ g(α2),

]g(α1), g(α1)◦g(α2) or g(α1) where ◦ and ] represent the outer-

most PSLTL-connectives of α.

(c) If there is a PSLTL-connective appearing in α1 and/or α2 in

β, then we apply the same procedure displayed above to α1 and

α2, where α1 and/or α2 are regarded as α above. If there is no

PSLTL-connective appearing in α1 and/or α2 in β, then we go

to the next step.

(d) We translate all the formulas of the form ∼p appearing in the

resulting formula expression into the SLTL-formulas of the form

p′.

(e) The resulting formula expression is just the required SLTL-formula

g(α).

2. In a similar way as shown above, we translate the SLTL-formula g(α)

into an LTL-formula fg(α) by using the translation function f defined

in Definition 4.1. Then, we obtain the required LTL-formula fg(α).

We show some translation examples below.

Example 4.15. We consider a formula G(∼([b]p ∧ ∼[c]q)) where b, c

are atomic sequences, and p, q are propositional variables.

Firstly, we translate this PSLTL-formula into a SLTL-formula by the

translation function g as follows:
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g(G(∼([b]p ∧ ∼[c]q)))

= Gg(∼([b]p ∧ ∼[c]q))

= G(g(∼[b]p) ∨ g(∼∼[c]q))

= G([b]g(∼p) ∨ g([c]q))

= G([b]p′ ∨ [c]g(q))

= G([b]p′ ∨ [c]q)

where p′ is a propositional variable in SLTL.

Next, we translate this SLTL-formula into a LTL-formula by the trans-

lation function f as follows:

f(G([b]p′ ∨ [c]q))

= Gf([b]p′ ∨ [c]q)

= G(f([b]p′) ∨ f([c]q))

= G(p′b ∨ qc)

where p′b, qc are propositional variables in LTL.

Thus, the formula G(∼([b]p ∧ ∼[c]q)) of PSLTL is translated into the

formula G(p′b ∨ qc) of LTL.

Example 4.16. We consider a formula G(∼[b]p→∼G[c]∼q) where b, c

are atomic sequences, and p, q are propositional variables.

Firstly, we translate this PSLTL-formula into a SLTL-formula by the

translation function g as follows.

g(G(∼[b]p→∼G[c]∼q)))

= Gg(∼[b]p→∼G[c]∼q))

= G(g(∼[b]p)→g(∼G[c]∼q))

= G([b]g(∼p)→Fg(∼[c]∼q))

= G([b]p′→F[c]g(∼∼q))

= G([b]p′→F[c]g(q))

= G([b]p′→F[c]q)

where p′ is a propositional variable in SLTL.

Next, we translate this SLTL-formula into a LTL-formula by the trans-

lation function f as follows.
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f(G([b]p′→F[c]q))

= Gf([b]p′→F[c]q)

= G(f([b]p′)→f(F[c]q))

= G(p′b→Ff([c]q))

= G(p′b→Fqc)

where p′b, qc are propositional variables in LTL.

Thus, the formula G(∼[b]p→∼G[c]∼q) of PSLTL is translated into the

formula G(p′b→Fqc) of LTL.

.5 Illustrative examples

In this section, we provide an illustrative example using PSLTL to model

the learning processes of students. The example is based on examples pre-

sented in [15, 16]. A model of students should be inconsistency-tolerant

since, in general, student understanding is uncertain and vague. PSLTL

can be used to express the negation of uncertain concepts such as “under-

stand” (or “understanding”). For instance, if we cannot determine whether

someone understands, then the uncertain concept “understand” can be rep-

resented by asserting the following inconsistent formula:

understand ∧ ∼understand

This is well-formalized because (understand ∧ ∼understand)→⊥ is not

valid in paraconsistent logic. On the other hand, we can decide whether

someone is learning; this decision is represented by ¬learning, where

(learning ∧ ¬learning)→⊥ is valid in classical logic.

The following negative expressions can be interpreted differently:

¬understand (someone does not understand).

∼understand (someone does not fully understand).

The first statement indicates that a person does not understand at all. The

second statement means that we can say that a person does not deeply or

fully understand, but he or she has a shallow understanding. We thus allow

understand ∧ ∼understand.
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Figure 1: Learning processes of students

In ontology representation, a concept hierarchy is constructed by ISA-

relations (i.e., “is a”-relations or sub-concept relations) between concepts,

i.e., a concept is a sub-concept of another concept. Below, we use se-

quence modal operators to represent ISA-relations between concepts. Let

c1, c2, . . . , cn be concept symbols. Then, we write a sequence of concept

names by [c1; c2; · · · ; cn]. Each order (ci, cj) (1 ≤ i < j ≤ n) of concepts

in the sequence modal operator [c1; c2; · · · ; cn] can be used to represent an

ISA-relation between ci and cj . For example, we declare the following order

of two concepts as an ISA-relation between “human” and “student”:

[student;human]

This sequence expresses that the concept “student” is a sub-concept of the

concept “human.”

The sequence modal operators in PSLTL are applied to hierarchical

structures where each hierarchical structure is a specific model of concepts

in a hierarchy. Figure 1 shows a hierarchical structure of the learning pro-

cesses of students in a high school. A typical high school student graduates

in three years. In the figure, ∼ustd (an abbreviation of ∼understand) rep-

resents uncertain negative information that can exist simultaneously with

ustd (an abbreviation of understand), which represents positive informa-

tion.
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We show a paraconsistent sequential model

M = 〈σi, {I+d̂}d̂∈SE, {I
−d̂}d̂∈SE〉

that corresponds to a model of the learning processes of students, as shown

in Figure 1. For any ∗ ∈ {+,−}, we have the following:

1. S = {s0, s1, s2, s3, s4, s5, s6, s7},

2. σ1 = s0s1s2s3s7s7s7 · · · ,

3. σ2 = s0s4s5s6s7s7s7 · · · ,

4. I∗human(enter) = {s0}, I∗human(graduate) = {s7},

5. I∗human(1st) = I∗student(1st) = {s1, s4},

6. I∗human(2nd) = I∗student(2nd) = {s2, s5},

7. I∗human(3rd) = I∗student(3rd) = {s3, s6},

8. I∗human(learning) = I∗student(learning) = {s1, s2, s3, s4, s5, s6},

9. I+human(ustd) = {s2, s3, s5, s6}, I−human(ustd) = {s1, s4, s5},

10. I∗student(enter) = I∗student(graduate) = ∅,

11. I∗John(enter) = I∗John(graduate) = ∅,

12. I∗John(1st) = {s1}, I∗John(2nd) = {s2}, I∗John(3rd) = {s3},

13. I+John(ustd) = {s2, s3}, I−John(ustd) = {s1},

14. I∗Maria(enter) = I∗Maria(graduate) = ∅,

15. I∗Maria(1st) = {s4}, I∗Maria(2nd) = {s5}, I∗Maria(3rd) = {s6},

16. I+Maria(ustd) = {s5, s6}, I−Maria(ustd) = {s4, s5}.

We then verify “Is there a student who has difficulty in understanding

the lectures in the first year?” This statement is expressed as follows:

[student;human]F(learning ∧ ∼understand ∧ 1st)
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The above statement is true because we have path s0→s1 with

s1 ∈ I−John(understand), s1 ∈ I∗John(learning), and s1 ∈ I∗John(1st)

with ∗ ∈ {+,−}. More specifically, the first year lectures are difficult for

John.

We can also verify “Is there a student who is confused while under-

standing lectures?” This statement is expressed as follows:

[student;human]F(learning ∧ ∼understand ∧ understand)

The above statement is true because we have path s0→s4→s5 with

s5 ∈ I∗Maria(learning), s5 ∈ I+Maria(understand), and

s5 ∈ I−Maria(understand). More specifically, understanding some second

year lectures is confusing for Maria.

We can also obtain the corresponding LTL-formulas of the above men-

tioned PSLTL-formulas, using the translation algorithm presented in the

previous section. Thus, we can also verify such resulting LTL-formulas by

using LTL.

We show such a translation example below. The PSLTL-formula

[s ; h]F(l ∧ ∼u ∧ u),

which is an abbreviation of the above mentioned formula, can be trans-

formed into the corresponding LTL-formula

F(ls ; h ∧ u′s ; h ∧ us ; h)

as follows.

First, we translate this PSLTL-formula into a SLTL-formula by the

translation function g as follows.

g([s ; h]F(l ∧ ∼u ∧ u))

= [s ; h]Fg(l ∧ ∼u ∧ u)

= [s ; h]F(g(l) ∧ g(∼u) ∧ g(u))

= [s ; h]F(l ∧ u′ ∧ u)

where u′ is a propositional variable in SLTL.

Next, we translate this SLTL-formula into a LTL-formula by the trans-

lation function f as follows.
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f([s ; h]F(l ∧ u′ ∧ u))

= Ff([s ; h](l ∧ u′ ∧ u))

= F(f([s ; h]l) ∧ f([s ; h]]u′) ∧ f([s ; h]u))

= F(ls ; h ∧ u′s ; h ∧ us ; h)

where ls ; h, u′s ; h and us ; h are propositional variables in LTL.

Next, we consider some proof examples using PSLTω. We can give a

proof of the sequent

⇒ [Maria; student;human](∼understand ∧ understand ∧ 2nd)

from the following assumptions:

1. ⇒ ∼[Maria][student][human]understand

2. ⇒ [Maria][student][human]understand

3. ⇒ [Maria][student][human]2nd

by:
⇒ ∼[M ][s][h]ustd

⇒ [M ][s][h]∼ustd
....

⇒ [M ; s;h]∼ustd

⇒ [M ][s][h]ustd
....

⇒ [M ; s;h]ustd

⇒ [M ][s][h]2nd
....

⇒ [M ; s;h]2nd

⇒ [M ; s;h](ustd ∧ 2nd)

⇒ [M ; s;h](∼ustd ∧ ustd ∧ 2nd)

where M , s, h and ustd are abbreviations of Maria, student, human and

understand, respectively.

We can also give a proof of the sequent

[Maria; student;human]enter ⇒ F[Maria; student;human]graduate

from the following assumptions:

1. [Maria; student;human]enter

⇒ [Maria; student;human]∼understand

2. [Maria; student;human]enter ⇒ [Maria; student;human]learning

3. [Maria; student;human]enter ⇒ [Maria; student;human]1st
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4. [Maria; student;human](understand ∧ learning ∧ 1st)

⇒ [Maria; student;human](understand ∧ learning ∧ 2nd)

5. [Maria; student;human](understand ∧ learning ∧ 2nd)

⇒ [Maria; student;human](understand ∧ learning ∧ 3rd)

6. [Maria; student;human](understand ∧ learning ∧ 3rd)

⇒ [Maria; student;human]graduate

by:

where P is:

where [m], e, u, l, 1, 2, 3, g are abbreviations of

[Maria; student;human], enter, understand, learning, 1st, 2nd and 3rd,

respectively.

.6 Conclusions and related works

In this paper, we introduced the semantics of PSLTL by extending the se-

mantics of LTL. PSLTL can appropriately represent inconsistency-tolerant

reasoning via the paraconsistent negation connective and sequential infor-

mation provided by sequence modal operators. By using the semantical em-

bedding theorem of PSLTL into LTL, we showed that PSLTL is decidable.

The Gentzen-type sequent calculus PSLTω for PSLTL was also introduced,
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and the cut-elimination theorem for this calculus was proved using the syn-

tactic embedding theorem of PSLTω into its non-paraconsistent fragment

SLTω. The completeness theorem for PSLTL (and PSLTω) was proved us-

ing both syntactical and semantical embedding theorems of PSLTL (and

PSLTω) into SLTL (and SLTω). It was thus shown in this paper that

PSLTL and PSLTω are a good theoretical basis for inconsistency-tolerant

temporal reasoning with sequential information.

Closely related works are discussed below. In [15], an extended LTL

called sequential paraconsistent LTL (SPLTL), was introduced as a Kripke

semantics to formalize inconsistency-tolerant temporal reasoning with hi-

erarchical information. A theorem for embedding SPLTL into LTL was

proved, and SPLTL was shown to be decidable. Moreover, some illustra-

tive examples for verifying the learning processes of students were presented

using the SPLTL semantics. The logic SPLTL in [15] is essentially the same

as PSLTL, but only semantics for SPLTL were introduced, i.e., a Gentzen-

type sequent calculus was not introduced for SPLTL in [15]. The present

paper provides a uniform embedding perspective with both semantics and

a proof system. The completeness theorem for PSLTL, which was obtained

using both semantical and syntactical embedding theorems, is one of the

main contributions of our paper.

In [16, 18], a formal method was proposed for modeling and verifying

inconsistency-tolerant temporal reasoning with hierarchical information.

To achieve this, temporal logic called sequential paraconsistent computa-

tion tree logic (SPCTL) was obtained from computation tree logic (CTL)

by adding a paraconsistent negation connective and sequence modal oper-

ators. The validity, satisfiability, and model-checking problems of SPCTL

were shown to be decidable. Illustrative examples for inconsistency-tolerant

temporal reasoning with hierarchical information were also presented using

SPCTL. For example, in [18], some illustrative examples for medical rea-

soning are presented based on SPCTL. SPCTL in [16, 18] was formulated

as a Kripke semantics, and a proof system for SPCTL was not introduced.

Thus, the completeness theorem for SPCTL was not given. Thus, compared

with SPCTL, our proposed PSLTL is regarded as a good theoretical basis

in the sense that it has both the semantics and proof system in conjunction

with the completeness theorem.

The rest of this paper addresses other related works on paraconsistent

temporal logics. While the idea of combining paraconsistency and sequen-
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tiality within a single temporal logic is new, the idea of introducing a para-

consistent temporal logic is not. In this study, PLTL [21] was used as a base

logic for constructing PSLTL. Although there are no other paraconsistent

variants of LTL, there are some other paraconsistent variants of CTL.

A multi-valued computation tree logic, χCTL, which has the algebraic

structure called quasi-Boolean logic, was introduced by Easterbrook and

Chechik [7]. The Kripke structure for this logic was based on a multi-

valued transition relation and a multi-valued valuation (labeling) function.

The multi-valued valuation function was a very general setting because it

can express n-valued truth values for any natural number n.

A quasi-classical temporal logic, QCTL, was proposed by Chen and Wu

[4] in order to formalize reasoning on inconsistent concurrent systems. In

this work, paraKripke structures were introduced for QCTL. In QCTL, a set

of positive and negative objects, which is constructed from a set of atomic

formulas, is used; in other words, a positive object +p and a negative object

−p are obtained from an atomic formula p.

PCTL was introduced in [20, 24] by Kamide and Kaneiwa as an al-

ternative to these paraconsistent computation-tree logics. An extension

PCTL∗ of PCTL was also studied from the point of view of bisimulations

for paraconsistent Kripke structures in paraconsistent model checking [13].

As explained before, another extension of PCTL was also studied in [16]

for verifying student learning processes in learning support systems. These

extended paraconsistent computation-tree logics are formulated as Kripke

semantics, but Gentzen-type proof systems for these logics have not been

proposed yet.
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