On the complex Monge-Ampère operator in unbounded domains

Per Åhag,

Rafał Czyż



In this note we give sufficient conditions on a measure µ, defined on a unbounded strictly hyperconvex domain in Cn, to be the Monge-Ampère  measure of some plurisubharmonic function. These generalize recent results by Lê et al.

Słowa kluczowe: Complex Monge-Amp±re operator, plurisubharmonic function, Dirichlet problem, unbounded hyperconvex domain.

1. Ahag P., Cegrell U., Czyz R., Ph¤m H. H., Monge_Amp±re measures on pluripolar sets, J. Math. Pures Appl., 92 (2009), 613_627.

2. _Ahag P., Czyz R., Kolodziej's subsolution theorem for unbounded pseudoconvex domains, Univ. Iagel. Acta Math., 50 (2012), 7_23.

3. Blocki Z., Estimates for the complex Monge_Amp±re operator, Bull. Pol. Acad. Sci. Math., 41 (1993), 151_157.

4. Cegrell U., The general definition of the complex Monge_Amp±re operator, Ann. Inst. Fourier (Grenoble), 54 (2004), 159_179.

5. Cegrell U., A general Dirichlet problem for the complex Monge_Amp±re operator, Ann. Polon. Math., 94 (2008), 131_147.

6. Cegrell U., Hed L., Subextension and approximation of negative plurisubharmonic functions, Michigan Math. J., 56 (2008), no. 3, 593_601.

7. Czyz R., The complex Monge_Amp±re operator in the Cegrell classes, Dissertationes Math., 466 (2009), 83 pp.

8. Hed L., Approximation of negative plurisubharmonic functions with given boundary values, Internat. J. Math., 21 (2010), no. 9, 1135_1145.

9. Jarnicki M., Zwonek W., personal communication, Krakâw, Poland, 8th July 2011. 13

10. Le H. M., Nguy¹n H. X., Subextension of plurisubharmonic functions without changing the Monge_Amp±re measures and applications, Ann. Polon. Math., 112 (2014), no. 1, 55_66.

11. Le H. M., Nguy¹n H. X., Nguy¹n T. V., The complex Monge_Amp±re equation in unbounded hyperconvex domains in Cn, Complex Var. Elliptic Equ., 59 (2014), no. 12, 1758_1774

12. Nguy¹n H. X., Monge_Amp±re measures of maximal subextensions of plurisubharmonic functions with given boundary values, Complex Var. Elliptic Equ., 60 (2015), no. 3, 429_435.

13. Ph¤m H. H., Pluripolar sets and the subextension in Cegrell's classes, Complex Var. Elliptic Equ., 53 (2008), no. 7, 675_684.