Simulation of concrete corrosion and interaction surfaces using cellular automata

Adam Zaborski

Abstrakt

This paper presents a new approach to determining the synergetic effects of environmental conditions and mechanical loading on the load bearing capacity of structural members. Cellular automata are used to estimate the residual strength of a RC section subjected to concrete corrosion. The evolution of interaction surfaces resulting from bending moments and axial force caused by a continuous degradation process is presented.

Słowa kluczowe: concrete corrosion, cellular automata, continuum damage mechanics, cross-section bearing capacity
References

[1] Bažant Z.P., Hauggaard A.B., Baweja S., Ulm F.-J., Microprestress-solidification theory for concrete creep. I: Aging and drying effects, Journal of Engineering Mechanics, Vol. 123(11), 1997, 1188-1194.

[2] Cervera M., Oliver J., Prato T., Thermo-chemo-mechanical model for concrete. II: Damage and creep, Journal of Engineering Mechanics, Vol. 125(9), 1999, 1028-1039.

[3] Comi C., Kirchmayr B., Pignatelli R., Two-phase damage modeling of concrete affected by alkali–silica reaction under variable temperature and humidity conditions, International Journal of Solids and Structures, Vol. 49, 2012, 3367-3380.

[4] Kattan P.I., Voyiadjis G.Z., Decomposition of damage tensor in continuum damage mechanics, Journal of Engineering Mechanics, Vol. 129(9), 2001, 940-944.

[5] Kubik J., Przepływy wilgoci w materiałach budowlanych, Oficyna Wyd. Politechniki Opolskiej, Opole 2000.

[6] Kuhl D., Bangert F., Meschke G., Coupled chemo-mechanical deterioration of cementitious materials. Part I: Modeling, International Journal of Solids and Structures, Vol. 41, 2004, 15-40.

[7] Papanikolaou V.K., Analysis of arbitrary composite sections in biaxial bending and axial load, Computers and Structures, Vol. 98-99, 2012, 33-54.

[8] Saetta A.V., Scotta R., Vitaliani R., Mechanical behavior of concrete under physicalchemical attacks, Journal of Engineering Mechanics, Vol. 124(10), 1998, 1100-1109.

[9] Samson E., Marchand J., Modeling the transport of ions in unsaturated cement-based materials, Computers and Structures, Vol. 85, 2007, 1740-1756.

[10] Schneider U., Chen S.-W., Deterioration of high-performance concrete subjected to attack by the combination of ammonium nitrate solution and flexure stress, Cement and Concrete Research, Vol. 35, 2005, 1705-1713.

[11] Xi J., Willam K.J., Frangopol D.M., Multiscale modeling of interactive diffusion processes in concrete, Journal of Engineering Mechanics, Vol. 126(3), 2000, 258-265.

[12] Zaborski A., Zastosowanie automatów komórkowych do numerycznej symulacji korozji betonu pod obciążeniem, Technical Transactions, series Mechanics, Vol. 107(9), 2010, 147-158.

[13] Zaborski A., Corrosion of reinforced concrete due to stress-assisted diffusion, Archive of Civil Engineering, Vol. 41(3), 1995, 447-460.

[14] Zaborski A., Symulacja numeryczna wpływu korozji chemicznej betonu na nośność elementów żelbetowych, Ochrona przed Korozją, Vol. 6, 2012, 279-281.

[15] Zaborski A., Zmiany nośności przekroju żelbetowego wynikające z postępującej degradacji chemiczno-mechanicznej betonu, Przegląd Budowlany, Vol. 5, 2014, 73-75.