Characteristics of selected methods for the synthesis of nanometric zirconium oxide – critical review

Justyna Kwaśny,

Wojciech Balcerzak


High chemical stability, resistance to changes in the pH, pressure and temperature meant that zirconium oxide is widely used in many fields. It is used in water treatment and waste water treatment processes, as
well as air purification. In this paper, selected methods  of nano-zirconia synthesis in liquid phase were characterized.  These methods  include,  among  others, the microemulsion  method.  Based on literature data,  the advantages and difficulties associated with the use of each method  are presented, in order to answer the question of which method of nanometric zirconium oxide synthesis in the liquid phase is the most  advantageous.  The authors  also  pointed  out some  directions of development  for the discussed methods, which relate to, among others, solvent change and the use of additives in the form of polymers.

Słowa kluczowe: nano zirconia, hydrothermal method, synthesis, microemulsion method

[1] Pulit J., Banach M., Kowalski Z., Chemical reduction asthe main method for obtaining nanosilver, Journalof Computational eoretical Nanoscience 10, 2, 2013, 276–284.

[2] Marzec A., Pulit J., Kwany J., Banach M., Nanometale– wybrane technologie wytwarzania, Technical Translations vol. 1-Ch/2012, 95–107.

[3] Swihart M. T., Vapor-phase synthesisof nanoparticles, Current Opinion in Colloid and Interface Science 8, 2003, 127–133.

[4] Reguła T., Darłak P., Tchórz A., Lech-Grega M., Próba wytworzenia kompozytu na osnowie CuxAly zbrojonego czsteczkami Al2O3 przy pomocy procesu mechanosyntezy, Prace Instytutu Odlewnictwa 1, 2010, 29–35.

[5] Goharshadi E. K., Hadadian M., Eectof calcination temperature on structural, vibrational,
optical, and rheological propertiesof zirconia nanoparticles, Ceramics International 38 (3),
2012, 1771–1777.

[6] Xie Z., Ma J., Xu Q., Huang Y., Cheng Y.-B., Eectsof dispersants and soluble counter-ions on aqueous dispersabilityof nano-sized zirconia powder, Ceramics International 30, 2004, 219–224.

[7] Khare J., Srivastava H., Singh C.H.P., Joshi M.P., Kukreja L.M., Vapor phase synthesis of hexagonal shaped single crystal yria stabilized zirconia nanoparticles using CO2 laser, Ceramics International 39, 2013, 1103–1109.

[8] Simchi A., Ahmadi R., Seyed Reihani S.M., Mahdavi A., Kinetics and mechanisms ofnanoparticle formation and growth in vapor phase condensation process, Materials and Design 28, 2007, 850–856.

[9] Vasilyeva E.S., Tolochko O.V., Kim B.K., Lee D.W., Kim D.S., Synthesisof tungsten disulphide nanoparticles bythe chemical vapor condensation method, Microelectronics Journal 40, 2009, 687–691.

[10] Gavillet J., Belmonte T., Hertz D., Michel H., Low temperature zirconia thin lm synthesis bya chemical vapour deposition process involving ZrCl4 and O2–H2–Ar microwave post- discharges. Comparison witha conventional CVD hydrolysis process, in Solid Films 301, 1997, 35–44.

[11] Srdic V.V., Winterer M., Miehe G., Hahn H., Dierent zirconia-aluminia nanopowders by modicationsof chemical vapour synthesis, Nanostructured Materials 12, 1999, 95–100.

[12] Choi H.-S., Ryu C.-H., Hwang G.-J., Obtentionof ZrO2–SiO2 hydrogen permselective membrane by chemical vapor deposition method, Chemical Engineering Journal 232, 2013, 302–309.

[13] Jiang J., Shen W., Hertz J.L., Fabricationof epitaxial zirconia and ceria thin lms with arbitrary dopant and host atom composition, in Solid Films 522, 2012, 66–70.

[14] Yeh T.-H., Lin R.-D., Cherng J.-S., Signicantly enhanced ionic conductivityof yria-stabilized zirconia polycrystalline nano-lm by thermal annealing, in Solid Films 544, 2013, 148–151.

[15] Hass D.D., Zhao H., Dobbins T., Allen A.J., Slia A.J., Wadley H.N.G., Multi-scale pore morphology in directed vapor deposited yria-stabilized zirconia coatings, Materials Science  and Engineering A 527, 2010, 6270–6282.

[16] Li H., Khor K.A., Kumar R., Cheang P., Characterizationof hydroxyapatite/nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process, Surface and Coatings Technology 182, 2004, 227–236.

[17] Joulia A., Bolelli G., Gualtieri E., Lusvarghi L., Valeri S., Vardelle M., Rossignol S., Vardelle A., Comparingthe deposition mechanisms in suspension plasma spray (SPS) and solution precursor plasma spray (SPPS) depositionof yria-stabilised zirconia (YSZ), Journal ofthe European Ceramic Society 34, 2014, 3925–3940.

[18] Dong H., Yang G.-J., Cai H.-N., Li C.-X., Li C.-J., Propagation featureof cracks in plasma- sprayed YSZ coatings under gradient thermal cycling, Ceramics International 41, 2015, 3481–3489.

[19] Dong H., Yang G.-J., Cai H.-N., Ding H., Li C.-X., Li C.-J., e inuenceof temperature gradient across YSZ on thermal cyclic lifetimeof plasma-sprayed thermal barrier coatings, Ceramics International 41, 2015, 11046–11056.

[20] Gao L., Wei L., Guo H., Gong S., Xu H., Deposition mechanismsof yria-stabilized zirconia coatings during plasma spray physical vapor deposition, Ceramics International 42, 2016, 5530–5536.

[21] Smits K., Grigorjeva L., Millers D., Kundzins K., Ignatans R., Grabis J., Monty C., Luminescence propertiesof zirconia nanocrystals prepared by solar physical vapor deposition, Optical Materials 37, 2014, 251–256.

[22] Bernard O., Huntz A.M., Andrieux M., Seiler W., Ji V., Poissonnet S., Synthesis, structure, microstructure and mechanical characteristicsof MOCVD deposited zirconia lms, Applied Surface Science 253, 2007, 4626–4640.

[23] Hemmer E., Kumakiri I. et al., Nanostructured ZrO2 membranes prepared by liquid- injection chemical vapor deposition, Microporous and Mesoporous Materials 163, 2012, 229–236.

[24] Shi G., Yu F., Wang Y., Li R., Synthesisof growth-controlled ZrO2 nanocrystals via vapor phase hydrolysis, Ceramics International 40, 2014, 13083–13088.

[25] Djurado E., Dessemond L., Roux C., Phase stabilityof nanostructured tetragonal zirconia polycrystals versus temperature and water vapor, Solid State Ionics 136–137, 2000, 1249–1254.

[26] Liu S., Jiang K., Zhang H., Liu Y., Zhang L., Su B., Liu Y., Nano-nano composite powdersoflanthanum–gadolinium zirconate and gadolinia-stabilized zirconia prepared by spray pyrolysis, Surface & Coatings Technology 232, 2013, 419–424.

[27] Amézaga-Madrid P., Hurtado-Macías A., Antúnez-Flores W., Estrada-Ortiz F., Pizá-Ruiz P., Miki-Yoshida M., Synthesis, microstructural, optical and mechanical propertiesofyria stabilized zirconia thin lms, Journalof Alloys and Compounds 536S, 2012, S412–S417.

[28] Tao K., Dou H., Sun K., Interfacial coprecipitation to prepare magnetite nanoparticles: Concentration and temperature dependence, Colloids and Surfaces A: Physicochem. Eng. Aspects 320, 2008, 115–122.

[29] Chen Q., Rondinone A.J., Chakoumakos B.C., Zhang Z.J., Synthesisof superparamagnetic MgFe2O4 nanoparticles by coprecipitation, Journalof Magnetism and Magnetic Materials 194, 1999, 1–7.

[30] Song J.E., Lee D.K., Kim H.W., Kim Y.I., Kang Y.S., Preparation and characterization ofmonodispersed indium–tin oxide nanoparticles, Colloids and Surfaces A: Physicochem. Eng. Aspects 257–258, 2005, 539–542.

[31] Benavente R., Salvador M.D., Alcázar M.C., Moreno R., Dense nanostructured zirconia compacts obtained by colloidal ltrationof binary mixtures, Ceramics International 38,  2012, 2111–2117.

[32] Chang Q., Zhou J., Wang Y., Meng G., Formation mechanismof zirconia nano-particles containing pores prepared via sol–gel-hydrothermal method, Advanced Powder Technology 21, 2010, 425–430.

[33] Chintaparty R., Palagiri B., Nagireddy R.R., Immareddy V.R., Madhuri W., EectofpH on structural, optical and dielectric propertiesof nano-zirconium oxide prepared by hydrothermal method, Materials Leers 161, 2015, 770–773.

[34] Kumar R. V., Ghoshal A.K., Pugazhenthi G., Fabricationof zirconia composite membrane by in-situ hydrothermal technique and its application in separationof methyl orange, Ecotoxicology and Environmental Safety 121, 2015, 73–79.

[35] Yoshimura M., Smiya S., Hydrothermal synthesisof crystallized nano-particlesof rare earth-doped zirconia and hafnia, Materials Chemistry and Physics 61, 1999, 1–8.

[36] Chang Q., Zhou J., Wang Y., Meng G., Preparation and characterizationof unique zirconia crystals within pores viaa sol–gel-hydrothermal method, Advanced Powder Technology 20, 2009, 371–374.

[37] Behbahani A., Rowshanzamir S., Esmaeilifar A., Hydrothermal synthesisof zirconia nanoparticles om commercial zirconia, Procedia Engineering 42, 2012, 908–917.

[38] Huang H.-L., Cao G.Z., Shen I.Y., Hydrothermal synthesisof lead zirconate titanate (PZT or Pb(Zr0.52Ti0.48)O3) nano-particles using controlled ramping and cooling rates, Sensors and Actuators A 214, 2014, 111–119.

[39] Ji X., Liu C. et al., Lauric acid template synthesisof thermally stable lamellar crystalline zirconia viaa reux-hydrothermal route, Materials Leers 122, 2014, 309–311.

[40] Chintaparty C. R., Inuenceof calcination temperature on structural, optical, dielectric propertiesof nano zirconium oxide, Optik 127, 2016, 4889–4893.

[41] Ao H., Liu X., Zhang H., Zhou J., Huang X., Feng Z., Xu H., Preparationof scandia stabilized zirconia powder using microwave-hydrothermal method, Journalof Rare Earths 33, 7, 2015, 746–751.

[42] Li C., Li K., Li H., Zhang Y., Ouyang H., Liu L., Sun C., Eectof reaction temperature on crystallizationof nanocrystalline zirconia synthesized by microwave-hydrothermal process, Journalof Alloys and Compounds 561, 2013, 23–27.

[43] Porbska K., Powłoki hydrofobowe na baize SiO2 wytwarzane metod zol-el, Budownictwo i Architektura 12(4), 2013, 257–267.

[44] Walczak M., Charakterystyka powłok ceramicznych SiO2 i SiO2–TiO2 otrzymywanych metod zol-el, Postpy Nauki i Techniki 9, 2011, 80–90.

[45] Persson C., Unosson E., Ajaxon I., Engstrand J., Engqvist H., Xia W., Nano grain sized zirconia–silica glass ceramics for dental applications, Journal ofthe European Ceramic Society 32, 2012, 4105–4110.

[46] Mishra M.K., Tyagi B., Jasra R.V., Synthesis and characterizationof nano-crystalline sulfated zirconia by sol–gel method, Journalof Molecular Catalysis A: Chemical 223, 2004, 61–65.

[47] Akkari R., Ghorbel A., Essayem N., Figueras F., Synthesis and characterization of mesoporous silica-supported nano-crystalline sulfated zirconia catalysts prepared bya sol–gel process: Eect ofthe S/Zr molar ratio, Applied Catalysis A: General 328, 2007, 43–51.

[48] De la Rosa J.R., Hernandez A., Rojas F., Ledezma J.J., Sol–gel synthesis and characterizationof novel La, Mn and Fe doped zirconia: Catalytic combustion activityof trichloroethylene, Colloids and Surfaces A: Physicochem. Eng. Aspects 315, 2008, 147–155.

[49] López-Quintela M.A., Tojo C., Blanco M.C., García Rio L., Leis J.R., Microemulsion dynamics and reactions in microemulsions, Current Opinion in Colloid & Interface Science 9, 2004, 264–278.

[50] Malik M.A., Wani M.Y., Hashim M.A., Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials, Arabian Journalof Chemistry 5, 2012, 397–417.

[51] Margulis-Goshen K., Magdassi S., Organic nanoparticles om microemulsions: Formation and applications, Current Opinion in Colloid & Interface Science 17, 2012, 290–296.

[52] Sanchez-Dominguez M., Pemartin K., Boutonnet M., Preparationof inorganic nanoparticles in oil-in-water microemulsions: A so and versatile approach, Current Opinion in Colloid & Interface Science 17, 2012, 297–305.

[53] Duan G.-R., Yang X.-J., Huang G.-H., Lu L.-D., Wang X., Water/span80/Triton X-100/n- hexyl alcohol/n-octane microemulsion system andthe studyof its application for preparing nanosized zirconia, Materials Leers 60, 2006, 1582–1587.

[54] Tai C. Y., Hsiao B.-Y., Chiu H.-Y., Preparationof spherical hydrous-zirconia nanoparticles by low temperature hydrolysis ina reverse microemulsion, Colloids and Surfaces A: Physicochem. Eng. Aspects 237, 2004, 105–111.

[55] López-Quintela M.A., Rivas J., Blanco M.C., Tojo C., Synthesisof nanoparticles in microemulsions, [in:] L. M. Liz-Marzán, P. V. Kamat (Eds.), Nanoscale Materials, Springer US, 2003, 135–155.

[56] Witek E., Kochanowski A., Pazdro M., Bortel E., Mikroemulsje jako ródło nanolateksów i nanoreaktorów, Polimery 51, 2006, 507–516.

[57] Zhou M., Xu L. et al., Investigation onthe preparation and propertiesof monodispersed Al2O3–ZrO2 nanopowder via Co-precipitation method, Journalof Alloys and Compounds 678, 2016, 337–342.

[58] Hsu Y.-W., Yang K.-H., Chang K.-M., Yeh S.-W., Wang M.-C., Synthesis and crystallization behaviorof 3 mol% yria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared usinga simple co-precipitation process, Journalof Alloys and Compounds 509, 2011, 6864–6870.

[59] Lan L., Chen S., Cao Y., Zhao M., Gong M., Chen Y., Preparationof ceria–zirconia by modied coprecipitation method and its supported Pd-only three-way catalyst, Journal of Colloid and Interface Science 450, 2015, 404–416.

[60] Aruna S.T., Arul Paligan B., Balaji N., Praveen Kumar V., Propertiesof plasma sprayed yria stabilized zirconia thermal barrier coating prepared om co-precipitation synthesized powder, Ceramics International 40, 2014, 11157–11162.

[61] Wang S., Li X., Zhai Y., Wang K., Preparationof homodispersed nano zirconia, Powder Technology 168, 2006, 53–58.

[62] Dudnik E.V., Modern methods for hydrothermal synthesisof ZrO2-based nanocrystalline powders, Powder Metallurgy and Metal Ceramics 48, 3–4, 2009, 238–248.

[63] Caillot T., Salama Z., Chanut N., Cadete Santos Aires F.J., Bennici S., Auroux A., Hydrothermal synthesis and characterizationof zirconia based catalysts, Journalof Solid State Chemistry 203, 2013, 79–85.

[64] Montazerian M. et al., Bioactivity and cell proliferation in radiopaque gel-derived CaO- P2O5-SiO2-ZrO2 glass and glass–ceramic powders, Materials Science and Engineering C 55, 2015, 436–447.

[65] Montazerian M. et al., Sol–gel synthesis, structure, sintering and propertiesof bioactive and inert nano-apatite–zirconia glass–ceramics, Ceramics International 41, 2015, 11024–11045.

[66] Miyoshi S., Akao Y., Kuwata N., et al., Water uptake and conduction propertyof nano-grained yria-doped zirconia fabricated by ultra-high pressure compaction at room temperature, Solid State Ionics 207, 2012, 21–28.

[67] You H.C., Chang C.-M., et al., Facile preparationof sol–gel-derived ultrathin and high-dielectric zirconia lms for capacitor devices, Applied Surface Science 258, 2012, 10084–10088.

[68] Díaz-Parralejo A., Macías-García A., Sánchez-González J., Díaz-Díez M.Á., Cuerda-Correa E.M., Inuence ofthe experimental parameters onthe synthesis processof yria- doped zirconia sol-gel lms, Surface & Coatings Technology 204, 2010, 2257–2261.

[69] Boutonnet M, Kizzling J, Stenius P, e preparationof monodisperse colloidal metal particles om microemulsions, Colloids and Surfaces 5, 1982, 209–225.

[70] Ma T., Huang Y., Yang J., He J., Zhao L., Preparationof spherical zirconia powder in microemulsion system and its densication behavior, Materials and Design 25, 2004, 515–519.

[71] Lee M.H., Tai C.Y., Lu C.J., Synthesisof spherical zirconia by precipitation between two water/oil emulsions, Journal ofthe European Ceramic Society 19, 1999, 2593–2603.

[72] Tai C.Y., Lee M.H., Wu Y.C., Controlof zirconia particle size by using two-emulsion precipitation technique, Chemical Engineering Science 56, 2001, 2389–2398.

[73] Qiu H.B., Gao L., Qiao H.C., Guo J.K., Yan D.S., Nano-crystalline zirconia powder processing through innovative wet-chemical methods, Nanostructured Materials 6, 1995, 373–376.