Przegląd zastosowań metod inżynierii odwrotnej do katalogowania i rekonstrukcji dóbr kultury

Danuta Miedzińska

Abstrakt

Dobra kultury stanowią bezcenny majątek każdej społeczności, narodu, a nawet ludzkości, który pozwala zrozumieć tożsamość i korzenie człowieka. Ochrana tych dóbr jest niezwykle istotna, szczególnie ze względu na zmieniający się gwałtownie klimat czy działania ludzkie, takie jak konflikty zbrojne. W artykule przedstawiono przykłady zastosowania bezinwazyjnych metod inżynierii odwrotnej do katalogowania, konserwacji, renowacji dzieł architektury i sztuki oraz tworzenia wirtualnych muzeów.


Overview of applications of reverse engineering methods for cataloging and restoration of cultural property

Heritage is invaluable assets of any community, nation or even humanity, which allows us to understand human identity and roots. Protection of these assets is extremely important, especially due to the rapidly changing climate or human activities such as armed conflicts. The article presents examples of the application of non-invasive reverse engineering methods for cataloging, conservation, restoration of architectural and art works and creation of virtual museums.

Keywords: 3D scanning, cataloging, reconstruction, reverse engineering

Słowa kluczowe: skanowanie 3D, katalogowanie, rekonstrukcja, inżynieria odwrotna
References

3D Systems (2019). 3D reverse engineering software helps UCLA Lab create virtual museum. https://www.3dsystems.com/customer-stories/3d-reverse-engineering-software-helps-ucla-lab-create-virtual-museum-ancient-maya.

Albertin, F., Bettuzzi, M., Brancaccio, R., Morigi, M. P., Casali, F. (2019). X-ray Computed Tomography in situ: An opportunity for museums and restoration laboratories. Heritage, 2(3), 2028–2038. doi.org/10.3390/heritage2030122.

Almukhtar, A., Saeed, Z. O., Abanda, H., Tah, J. H. M. (2021). Reality capture of buildings using 3D laser scanners. CivilEng, 2(1), 214–235. https://doi.org/10.3390/civileng2010012.

Cho, H. G., Kang, Y. J. (2019). Study on the order status of the cultural properties repair works in Seoul. Journal of the Korean Institute of Landscape Architecture, 47(1), 10–25. doi.org/10.9715/KILA.2019.47.1.010.

Compton, A. (2022). Why we work at Auschwitz [film]. https://www.auschwitz.org/muzeum/aktualnosci/w-tym-szczegolnym-miejscu-czlowiek-musi-spotkacczlowieka-dokument-o-przewodnikach-miejsca-pamieci-,2275.html.

Cramer, L., Brix, A., Matin, E., Ruhli, F., Hussein, K. (2018). Computed tomography– detected paleopathologies in ancient Egyptian mummies. Current Problems in Diagnostic Radiology, 47(4), 225–232. doi.org/10.1067/j.cpradiol.2017.06.012.

Dombroski, C. E., Balsdon, M. E., Froats, A. (2014). The use of a low-cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study. BMC Research Notes, 7, artykuł 443,1. doi.org/10.1186/1756-0500-7-443.

Fikus, B., Paszkowski, R., Płatek, P. (2018). Application of 3D scanning technology for evaluation of virtual model of gun geometry. Problemy Mechatroniki. Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa, Wydział Mechatroniki i Lotnictwa Wojskowej Akademii Technicznej, 9(1), 105–114, doi.org/10.5604/01.3001.0011.7183.

Ham, N., Bae, B. I., Yuh, O. K. (2020). Phased reverse engineering framework for sustainable cultural heritage archives using laser scanning and BIM: The case of the Hwanggungwoo (Seoul, Korea). Sustainability, 12, artykuł 8108. https://doi.org/10.3390/su12198108.

Harwood-Nash, D. C. (1979). Computed tomography of ancient Egyptian mummies. Journal of Computer Assisted Tomography, 3(6), 768–773.

Javaid, M., Haleem, A., Singh, R. P., Suman, R. (2021). Industrial perspectives of 3D scanning: Features, roles and it’s analytical applications. Sensors International, 2, artykuł 100114. doi.org/10.1016/j.sintl.2021.100114.

Kang, K. W., Pereda, M. D., Canafoglia, M. E., Bilmes, P., Llorente, C., Bonetto, R. (2012). Uncertainty studies of topographical measurements on steel surface corrosion by 3D scanning electron microscopy. Micron, 43(2–3), 387–395. https://doi.org/10.1016/j.micron.2011.10.005.

LaRocco, J., Paeng, D. G. (2020). A functional analysis of two 3D-scanned antique pistols from New Zealand. Virtual Archaeology Review, 11(22), 85–94. doi.org/10.4995/var.2020.12676.

Liang, Y., Woźniak, M. (2022). Virtual reconstruction system of building spatial structure based on laser 3D scanning under multivariate big data fusion. Mobile Networks and Applications, 27, 607–616. https://doi.org/10.1007/s11036-021-01825-2.

Miedzińska, D. (2010). Tomografia komputerowa w modelowaniu materiałów. XXIX Seminarium Koła Naukowego Mechaników, 324–329.

Miedzińska, D., Niezgoda, T., Gieleta, R. (2012). Numerical and experimental aluminum

foam microstructure testing with the use of computed tomography. Computational Materials Science, 64, 90–95, doi.org/10.1016/j.commatsci.2012.02.021.

Mierzwa, S. (12 maja 2019). Stare Miasto w Krakowie. https://chasingunesco.com/stare-miasto-w-krakowie.

Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143, 172–196, doi.org/10.1016/j.compositesb.2018.02.012.

Polski Komitet ds. UNESCO (2020). Polskie obiekty na Liście Światowego Dziedzictwa. https://www.unesco.pl/kultura/dziedzictwo-kulturowe/swiatowe-dziedzictwo/polskie-obiekty.

Saleem, S. N., Hawass, Z. (2014). Ankylosing spondylitis or diffuse idiopathic skeletal hyperostosis in royal Egyptian mummies of 18th –20th Dynasties? CT and archaeology studies. Arthiris & Rheumatology, 66(12), 3311–3316. https://doi.org/10.1002/art.38864.

Sargentis, G. F., Frangedaki, E., Chiotinis, M., Koutsoyiannis, D., Camarinopoulos, S., Camarinopoulos, A., Lagaros, N. D. (2022). 3D scanning/printing: A technological stride in sculpture. Technologies, 10(9). doi.org/10.3390/technologies10010009.

Sesana, E., Gagnon, A. S., Ciantelli, Ch., Cassar, J., Hughes, J. J. (2021). Climate change impacts on cultural heritage: A literature review. WIREs Climate Change, 12(4), e710, doi.org/10.1002/wcc.710.

Shih, N. J., Wang, H. J., Lin, Ch. Y., Liau, Ch. Y. (2007). 3D scan for the digital preservation of a historical temple in Taiwan. Advances in Engineering Software, 38(7), 501–512, doi.org/10.1016/j.advengsoft.2006.09.014.

Tacik, Ł. (26 sierpnia 2007). Wysadzone przez talibów posągi buddy będą odbudowane. https://tvn24.pl/swiat/wysadzone-przez-talibow-posagi-buddy-beda-odbudowane-ra26093-3598996.

Thamir, S. Z., Abed, F. M. (2020). How geometric reverse engineering techniques can conserve our heritage; a case study in Iraq using 3D laser scanning. IOP Conference Series: Materials Science Engineering, 737. doi.org/10.1088/1757-899X/737/1/012231.

Wilson, P. F., Smith, M. P., Hay, J., Warnett, J. M., Attridge, A., Williams, M. A. (2018). X-ray computed tomography (XCT) and chemical analysis (EDX and XRF) used in conjunction for cultural conservation: the case of the earliest scientifically described dinosaur Megalosaurus bucklandii. Heritage Science, 6, artykuł 58. doi.org/10.1186/s40494-018-0223-0.

Worsztynowicz, A. (2022). O Hali. https://halastulecia.pl/o-hali/#pid=1.

Zesch, S., Panzer, S., Rosendahl, W., Nance, J. W., Schonberg, S. O., Henzler, T. (2016). From first to latest imaging technology: Revisiting the first mummy investigated with X-ray in 1896 by using dual-source computed tomography. European Journal of Radiology Open, 3, 172–181, doi.org/10.1016/j.ejro.2016.07.002.