Borel sets without perfectly many overlapping translations
Abstrakt
We study the existence of Borel sets B ⊆ ω2
PEŁNY TEKST:
PDF (En)References
[1] M. Balcerzak, A. Rosłanowski, and S. Shelah, Ideals without ccc, Journal of Symbolic Logic 63 (1998), 128–147, arxiv:math/9610219.
[2] T. Bartoszy´nski and H. Judah, Set Theory: On the Structure of the Real Line, A.K. Peters, Wellesley, Massachusetts, 1995.
[3] M. Elekes and T. Keleti, Decomposing the real line into Borel sets closed under addition, MLQ Math. Log. Q. 61 (2015), 466–473.
[4] T. Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, the third millennium edition, revised and expanded.
[5] A. Rosłanowski and V.V. Rykov, Not so many non-disjoint translations, Proceedings of the American Mathematical Society, Series B 5 (2018), 73–84, arxiv:1711.04058.
[6] A. Rosłanowski, and S. Shelah, Borel sets without perfectly many overlapping translations II. In preparation.
[7] S. Shelah, Borel sets with large squares, Fundamenta Mathematicae 159 (1999), 1–50, arxiv:math/9802134.
[8] P. Zakrzewski, On Borel sets belonging to every invariant ccc –ideal on 2N, Proc. Amer. Math. Soc. 141 (2013), 1055–1065.