Reports on Mathematical Logic,2021, Number 56
Rok wydania: 2021
Słowa kluczowe:
cardinal characteristic,
covering number,
uniformity,
negations,
A Nelson algebras,
pseudocomplemented distributive lattices,
Kleene algebras.,
and phrases: modal logic,
bisimulation invariance,
tableaux,
intuitionistic logic,
minimal logic,
actuality operator,
empirical negation,
deduction theorem,
continuum hypothesis,
structure of linear orderings,
partition relations.,
ordered field,
0-definably complete,
real closed field
Some cardinal characteristics related to the covering number and the uniformity of the meagre ideal
Reports on Mathematical Logic,
2021,
Number 56,
s. 3-14
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.001.14373
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.001.14373
On the relation of negations in Nelson algebras
Reports on Mathematical Logic,
2021,
Number 56,
s. 15-56
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.002.14374
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.002.14374
Tableau-based translation from first-order logic to modal logic
Reports on Mathematical Logic,
2021,
Number 56,
s. 57-74
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.003.14375
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.003.14375
A note on Humberstone's constant Ω
Reports on Mathematical Logic,
2021,
Number 56,
s. 75-99
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.004.14376
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.004.14376
Embeddability Between Orderings and GCH
Reports on Mathematical Logic,
2021,
Number 56,
s. 101-109
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.005.14377
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.005.14377
Corrigendum to "On Definable Completeness for Ordered Fields" RML, 54 (2019), 95 - 100
Reports on Mathematical Logic,
2021,
Number 56,
s. 111-113
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.006.14378
Data publikacji online: 10 listopada 2021
DOI 10.4467/20842589RM.21.006.14378