A note on Humberstone's constant Ω

Satoru Niki,

Hitoshi Omori

Abstrakt

We investigate an expansion of positive intuitionistic logic obtained by adding a constant Ω  introduced by Lloyd Humberstone. Our main results include a sound and strongly complete axiomatization, some comparisons to other expansions of intuitionistic logic obtained by adding actuality and empirical negation, and an algebraic semantics. We also brie y discuss its connection to classical logic.

AMS subject classification: 03B20, 03B50.

Słowa kluczowe: intuitionistic logic, minimal logic, actuality operator, empirical negation, deduction theorem
References

[1] A. Colacito, D. de Jongh, and A.L. Vargas, Subminimal negation, Soft Computing 21 (2017), 165-174.

[2] J.N. Crossley and L. Humberstone, The logic of actually", Reports on Mathematical Logic 8 (1977), 11-29.

[3] M. De, Empirical Negation. Acta Analytica 28 (2013), 49-69.

[4] M. De and H. Omori, More on empirical negation, In Rajeev Gore, Barteld Kooi, and Agi Kurucz, editors, Advances in modal logic, volume 10, pp. 114-133. College Publications, 2014.

[5] M. De and H. Omori, Classical negation and expansions of Belnap-Dunn logic, Studia Logica 103 (2015), 825-851.

[6] M. De and H. Omori, Classical and empirical negation in subintuitionistic logic, in: Lev Beklemishev, Stephane Demri, and Andras Mate, editors, Advances in Modal Logic, volume 11, pages 217-235. College Publications, 2016.

[7] L. Humberstone, Contra-classical logics, Australasian Journal of Philosophy 78:4 (2000), 438-474.

[8] L. Humberstone, Extensions of intuitionistic logic without the deduction theorem: Some simple examples, Reports on Mathematical Logic 40 (2006), 45-82.

[9] V.A. Jankov, Conjunctively indecomposable formulas in propositional calculi, Mathematics of the USSR-Izvestiya 3(1):17 (1969). 

[10] I. Johansson, Der minimalkalkul, ein reduzierter intuitionistischer formalismus, Compositio Mathematica 4 (1937), 119-136.

[11] Y. Komori, On Komori algebras, Bulletin of the Section of Logic 30:2 (2001), 67-70.

[12] S. Niki, Empirical negation, co-negation and contraposition rule I: Semantical investigations, Bulletin of the Section of Logic 49:3 (2020), 231-253.

[13] S. Niki and H. Omori, Actuality in intuitionistic logic, in: Nicola Olivetti, Rineke Verbrugge, Sara Negri, and Gabriel Sandu, editors, Advances in Modal Logic, volume 13, pp. 459-479. College Publications, 2020.

[14] S. Odintsov, Constructive negations and paraconsistency, volume 26 of Trends in Logic, Springer Science & Business Media, 2008.

[15] H. Ono, Proof Theory and Algebra in Logic, Short Textbooks in Logic, Springer, 2019.

[16] G. Restall, Subintuitionistic Logics, Notre Dame Journal of Formal Logic 35:1 (1994), 116-126.

[17] H.P. Sankappanavar and S. Burris, A course in universal algebra, volume 78 of Graduate Texts in Mathematics, Springer, 1981.

[18] K. Segerberg, Propositional logics related to Heyting's and Johansson's, Theoria 34:1 (1968), 26-61.

[19] Y. Tanaka, An infinitary extension of Jankov's theorem, Studia Logica 86:1 (2007), 111-131.