Some cardinal characteristics related to the covering number and the uniformity of the meagre ideal

Nattapon Sonpanow,

Pimpen Vejjajiva

Abstrakt

We extend the concepts of splitting, reaping, and independent families to families of functions and permutations on ω and define associated cardinal characteristics sf , sp, rf , rp, if , and ip. We study relationships among cov(M), non(M), and these cardinals. In this paper, we show that sf = non(M) = sp, rf = cov(M) ≤ rp, and cov(M) ≤ if , ip.

AMS subject classification: 03E17.

Słowa kluczowe: cardinal characteristic, covering number, uniformity
References

[1] T. Bartoszyński, Combinatorial aspects of measure and category, Fundamenta Mathematicae, 127 (1987), 225-239.

[2] M. G. Bell, On the combinatorial principle P(c), Fundamenta Mathematicae, 114 (1981), 149-157.

[3] A. Blass, Combinatorial cardinal characteristics of the continuum, In: Handbook of Set Theory, vol. 1, M. Foreman, A. Kanamori (eds.), (Springer, Berlin, 2010), 395-490.

[4] J. Brendle, O. Spinas, Y. Zhang, Uniformity of the meager ideal and maximal cofinitary groups, Journal of Algebra, 232 (2000), 209-225.

[5] D. H. Fremlin, S. Shelah, On partitions of the real line, Israel Journal of Mathematics, 32 (1979), 299-304.

[6] L. J. Halbeisen, Combinatorial set theory: With a gentle introduction to forcing, 2 ed., Springer International Publishing (2017).

[7] K. Kunen, Set theory, vol. 34 of Studies in logic, College Publications (2011).

[8] N. Sonpanow, P. Vejjajiva, Independent families of functions and permutations, Mathematical Logic Quarterly, 66 (2020), 311-315.

[9] Y. Zhang, On a class of m.a.d. families, Journal of Symbolic Logic, 64 (1999), 737-746.