Non-generators in extensions of infinitary algebras

Paolo Lipparini

Abstrakt

Contrary to the finitary case, the set Γ(A) of all the non-generators of an infinitary algebra A is not necessarily a subalgebra of A. We show that the phenomenon is ubiquitous: every algebra with at least one infinitary operation can be embedded into some algebra B such that Γ(B) is not a subalgebra of B. As far as expansions are concerned, there are examples of infinite algebras A such that in every expansion B of A the set Γ(B) is a subalgebra of B. However, under relatively weak assumptions on A, it is possible to get some expansion B of A such that Γ(B) fails to be a subalgebra of B.

AMS subject classification: Primary 08A65.

Słowa kluczowe: non-generator, infinitary algebra
References

[1] C. Bergman and G. Slutzki, Computational complexity of generators and nongenerators in algebra, Internat. J. Algebra Comput. 12 (2002), 719-735.

[2] G. Grätzer, Universal algebra, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London (1968), second edition with appendices, Springer-Verlag, New York-Heidelberg (1979).

[3] G. E. Hansoul, The Frattini subalgebra of an infinitary algebra, Bull. Soc. Roy. Sci. Liége49 (1980), 423-424.

[4] G. Janelidze, Frattini subobjects and extensions in semi-Abelian categories, Bull. Iranian Math. Soc. 44 (2018), 291-304.

[5] E. W. Kiss and S.M. Vovsi, Critical algebras and the Frattini congruence, Algebra Universalis 34 (1995), 336-344.

[6] P. Lipparini, Non-generators in complete lattices and semilattices, Acta Math. Hungar. 166 (2022), 423-431.

[7] H. Rubin and J.E. Rubin,, Equivalents of the axiom of choice. II, Studies in Logic and the Foundations of Mathematics, 116, North-Holland Publishing Co., Amsterdam (1985).

Czasopismo ukazuje się w sposób ciągły on-line.
Pierwotną formą czasopisma jest wersja elektroniczna.